3,063 research outputs found
The Evolution of Multilateral Regimes: Implications for Climate Change
Examines why multilateral regimes deepen, broaden, and integrate; analyzes the evolution of the United Nations Framework Convention on Climate Change into a more incremental approach to reaching a legally binding agreement; and explores implications
Measurement, Reporting and Verification in a Post-2012 Climate Agreement
Considers options for the measurement, reporting, and verification of developed nations' mitigation commitments or actions, developing nations' mitigation actions, and support for the latter. Outlines basic issues and existing mechanisms and requirements
International Climate Efforts Beyond 2012: A Survey of Approaches
Provides an overview of key issues in the design and negotiation of future international climate efforts and describes how various proposals seek to address them. Outlines criteria for assessing different options from a policy and a political perspective
Recommended from our members
Climate justice and the international regime: before, during and after Paris
With a focus on key themes and debates, this article aims to illustrate and assess how the interaction between justice and politics has shaped the international regime and defined the nature of the international agreement that was signed in COP21 Paris. The work demonstrates that despite the rise of neo-conservatism and self-interested power politics, questions of global distributive justice remain a central aspect of the international politics of climate change. However, while it is relatively easy to demonstrate that international climate politics is not beyond the reach of moral contestations, the assessment of exactly how much impact justice has on climate policies and the broader normative structures of the climate governance regime remains a very difficult task. As the world digests the Paris Agreement, it is vital that the current state of justice issues within the international climate change regime is comprehensively understood by scholars of climate justice and by academics and practitioners, not least because how these intractable issues of justice are dealt with (or not) will be a crucial factor in determining the effectiveness of the emerging climate regime
Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites
Autoantibodies to insulin are a harbinger of autoimmunity in type 1 diabetes in humans and in non-obese diabetic mice. To understand the genesis of these autoantibodies, we investigated the interactions of insulin-specific T and B lymphocytes using T cell and B cell receptor transgenic mice. We found spontaneous anti-insulin germinal center (GC) formation throughout lymphoid tissues with GC B cells binding insulin. Moreover, because of the nature of the insulin epitope recognized by the T cells, it was evident that GC B cells presented a broader repertoire of insulin epitopes. Such broader recognition was reproduced by activating naive B cells ex vivo with a combination of CD40 ligand and interleukin 4. Thus, insulin immunoreactivity extends beyond the pancreatic lymph node–islets of Langerhans axis and indicates that circulating insulin, despite its very low levels, can have an influence on diabetogenesis
The challenges of monitoring national climate policy: learning lessons from the EU
One of the most central and novel features of the new climate governance architecture emerging from the 2015 Paris Agreement is the transparency framework committing countries to provide, inter alia, regular progress reports on national pledges to address climate change. Many countries will rely on public policies to turn their pledges into action. This article focuses on the EU’s experience with monitoring national climate policies in order to understand the challenges that are likely to arise as the Paris Agreement is implemented around the world. To do so, the research employs – for the first time – comparative empirical data submitted by states to the EU’s monitoring system. Our findings reveal how the EU’s predominantly technical interpretation of four international reporting quality criteria – an approach borrowed from reporting on GHG fluxes – has constrained knowledge production and stymied debate on the performance of individual climate policies. Key obstacles to more in-depth reporting include not only political concerns over reporting burdens and costs, but also struggles over who determines the nature of climate policy monitoring, the perceived usefulness of reporting information, and the political control that policy knowledge inevitably generates. Given the post-Paris drive to achieve greater transparency, the EU’s experience offers a sobering reminder of the political and technical challenges associated with climate policy monitoring, challenges that are likely to bedevil the Paris Agreement for decades to come
Climate geoengineering: issues of path-dependence and socio-technical lock-in
As academic and policy interest in climate geoengineering grows, the potential irreversibility of technological developments in this domain has been raised as a pressing concern. The literature on socio-technical lock-in and path dependence is illuminating in helping to situate current concerns about climate geoengineering and irreversibility in the context of academic understandings of historical socio-technical development and persistence. This literature provides a wealth of material illustrating the pervasiveness of positive feedbacks of various types (from the discursive to the material) leading to complex socio-technical entanglements which may resist change and become inflexible even in the light of evidence of negative impacts. With regard to climate geoengineering, there are concerns that geoengineering technologies might contribute so-called ‘carbon lock-in’, or become irreversibly ‘locked-in’ themselves. In particular, the scale of infrastructures that geoengineering interventions would require, and the issue of the so-called ‘termination effect’ have been discussed in these terms. Despite the emergent and somewhat ill-defined nature of the field, some authors also suggest that the extant framings of geoengineering in academic and policy literatures may already demonstrate features recognizable as forms of cognitive lock-in, likely to have profound implications for future developments in this area. While the concepts of path-dependence and lock-in are the subject of ongoing academic critique, by drawing analytical attention to these pervasive processes of positive feedback and entanglement, this literature is highly relevant to current debates around geoengineering
Spectra of supernovae in the nebular phase
When supernovae enter the nebular phase after a few months, they reveal
spectral fingerprints of their deep interiors, glowing by radioactivity
produced in the explosion. We are given a unique opportunity to see what an
exploded star looks like inside. The line profiles and luminosities encode
information about physical conditions, explosive and hydrostatic
nucleosynthesis, and ejecta morphology, which link to the progenitor properties
and the explosion mechanism. Here, the fundamental properties of spectral
formation of supernovae in the nebular phase are reviewed. The formalism
between ejecta morphology and line profile shapes is derived, including effects
of scattering and absorption. Line luminosity expressions are derived in
various physical limits, with examples of applications from the literature. The
physical processes at work in the supernova ejecta, including gamma-ray
deposition, non-thermal electron degradation, ionization and excitation, and
radiative transfer are described and linked to the computation and application
of advanced spectral models. Some of the results derived so far from
nebular-phase supernova analysis are discussed.Comment: Book chapter for 'Handbook of Supernovae,' edited by Alsabti and
Murdin, Springer. 51 pages, 14 figure
Thermonuclear Kinetics in Astrophysics
Over the billions of years since the Big Bang, the lives, deaths and
afterlives of stars have enriched the Universe in the heavy elements that make
up so much of ourselves and our world. This review summarizes the methods used
to evolve these nuclear abundances within astrophysical simulations. These
methods fall into 2 categories; evolution via rate equations and via
equilibria. Because the rate equations in nucleosynthetic applications involve
a wide range of timescales, implicit methods have proven mandatory, leading to
the need to solve matrix equations. Efforts to improve the performance of such
rate equation methods are focused on efficient solution of these matrix
equations, in particular by making best use of the sparseness of these
matrices, and finding methods that require less frequent matrix solutions.
Recent work to produce hybrid schemes which use local equilibria to reduce the
computational cost of the rate equations is also discussed. Such schemes offer
significant improvements in the speed of reaction networks and are accurate
under circumstances where calculations which assume complete equilibrium fail.Comment: 27 pages, 2 figures, a review for a special issue of Nuclear Physics
- …
