95 research outputs found

    Seasonal mesozooplankton patterns and timing of life history events in high-arctic fjord environments

    Get PDF
    Seasonal patterns in mesozooplankton composition, vertical distribution, and timing of reproduction are challenging to study in the open sea due to ocean currents and mix of populations of different origins. Sill fjords, on the other hand, with restricted water exchange, are ideal locations for studying taxa- and community-specific adaptations to the prevailing environment. Here, we present re-occurring patterns in the mesozooplankton community structure in Billefjorden, Svalbard, a high Arctic sill fjord with extensive seasonal ice cover, based on monthly sampling from 2011 to 2013. The zooplankton community composition confirmed the Arctic character of this fjord. Predominantly herbivorous taxa, such as Calanus glacialis and Pseudocalanus spp., showed strong seasonal variation in abundance and depth distribution, with population minima in spring being compensated by a rapid population recovery during summer. Omnivorous taxa, such as Microcalanus spp. and copepods of the family Aetideidae, largely remained at depth throughout the year and had an extended or year-round reproductive period. Deep-dwelling omnivorous/ carnivorous species peaked in abundance in winter–spring when herbivorous populations were severely depleted. Taxa with seasonally limited occurrences, i.e., meroplankton, peaked in spring and summer at the surface, but were largely absent for the rest of the year. The different life histories, with contrasting feeding modes, depth preferences, and timing of reproduction lead to reduced interspecies competition and allow for a rather high and stable abundance of mesozooplankton year-round despite the short primary production window at high latitudes

    Identification, Discrimination, and Discovery of Species of Marine Planktonic Ostracods Using DNA Barcodes

    Get PDF
    The Ostracoda (Crustacea; Class Ostracoda) is a diverse, frequently abundant, and ecologically important component of the marine zooplankton assemblage. There are more than 200 described species of marine planktonic ostracods, many of which (especially conspecific species) can be identified only by microscopic examination and dissection of fragile morphological characters. Given the complexity of species identification and increasing lack of expert taxonomists, DNA barcodes (short DNA sequences for species discrimination and identification) are particularly useful and necessary. Results are reported from analysis of 210 specimens of 78 species of marine planktonic ostracods, including two novel species, and 51 species for which barcodes have not been previously published. Specimens were collected during 2006 to 2008 from the Atlantic, Indian, and Southern Oceans, Greenland Sea and Gulf of Alaska. Samples were collected from surface to 5,000 m using various collection devices. DNA sequence variation was analyzed for a 598 base-pair region of the mitochondrial cytochrome oxidase subunit I (COI) gene. Kimura-2-Parameter (K2P) genetic distances within described species (mean = 0.010 ± 0.017 SD) were significantly smaller than between species (0.260 + 0.080), excluding eight taxa hypothesized to comprise cryptic species due to morphological variation (especially different size forms) and/or collection from different geographic regions. These taxa showed similar K2P distance values within (0.014 + 0.026) and between (0.221 ± 0.068) species. All K2P distances > 0.1 resulted from comparisons between identified or cryptic species, with no overlap between intra- and interspecific genetic distances. A Neighbor Joining tree resolved nearly all described species analyzed, with multiple sequences forming monophyletic clusters with high bootstrap values (typically 99%). Based on taxonomically and geographically extensive sampling and analysis (albeit with small sample sizes), the COI barcode region was shown to be a valuable character for discrimination, recognition, identification, and discovery of species of marine planktonic ostracods

    Postglacial expansion of the arctic keystone copepod calanus glacialis

    Get PDF
    Calanus glacialis, a major contributor to zooplankton biomass in the Arctic shelf seas, is a key link between primary production and higher trophic levels that may be sensitive to climate warming. The aim of this study was to explore genetic variation in contemporary populations of this species to infer possible changes during the Quaternary period, and to assess its population structure in both space and time. Calanus glacialis was sampled in the fjords of Spitsbergen (Hornsund and Kongsfjorden) in 2003, 2004, 2006, 2009 and 2012. The sequence of a mitochondrial marker, belonging to the ND5 gene, selected for the study was 1249 base pairs long and distinguished 75 unique haplotypes among 140 individuals that formed three main clades. There was no detectable pattern in the distribution of haplotypes by geographic distance or over time. Interestingly, a Bayesian skyline plot suggested that a 1000-fold increase in population size occurred approximately 10,000 years before present, suggesting a species expansion after the Last Glacial Maximum.GAME from the National Science Centre, the Polish Ministry of Science and Higher Education Iuventus Plus [IP2014 050573]; FCT-PT [CCMAR/Multi/04326/2013]; [2011/03/B/NZ8/02876

    SNAGA, TEORIJA I PRAKSA (Kraft, Theorie und Praxis)

    Get PDF
    We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are ‘distant neritic.’ While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas

    The Barents and Chukchi Seas: Comparison of two Arctic shelf ecosystems

    Full text link
    This paper compares and contrasts the ecosystems of the Barents and Chukchi Seas. Despite their similarity in a number of features, the Barents Sea supports a vast biomass of commercially important fish, but the Chukchi does not. Here we examine a number of aspects of these two seas to ascertain how they are similar and how they differ. We then indentify processes and mechanisms that may be responsible for their similarities and differences.Both the Barents and Chukchi Seas are high latitude, seasonally ice covered, Arctic shelf-seas. Both have strongly advective regimes, and receive water from the south. Water entering the Barents comes from the deep, ice-free and "warm" Norwegian Sea, and contains not only heat, but also a rich supply of zooplankton that supports larval fish in spring. In contrast, Bering Sea water entering the Chukchi in spring and early summer is cold. In spring, this Bering Sea water is depleted of large, lipid-rich zooplankton, thus likely resulting in a relatively low availability of zooplankton for fish. Although primary production on average is similar in the two seas, fish biomass density is an order of magnitude greater in the Barents than in the Chukchi Sea. The Barents Sea supports immense fisheries, whereas the Chukchi Sea does not. The density of cetaceans in the Barents Sea is about double that in the Chukchi Sea, as is the density of nesting seabirds, whereas, the density of pinnipeds in the Chukchi is about double that in the Barents Sea. In the Chukchi Sea, export of carbon to the benthos and benthic biomass may be greater. We hypothesize that the difference in fish abundance in the two seas is driven by differences in the heat and plankton advected into them, and the amount of primary production consumed in the upper water column. However, we suggest that the critical difference between the Chukchi and Barents Seas is the pre-cooled water entering the Chukchi Sea from the south. This cold water, and the winter mixing of the Chukchi Sea as it becomes ice covered, result in water temperatures below the physiological limits of the commercially valuable fish that thrive in the southeastern Bering Sea. If climate change warms the Barents Sea, thereby increasing the open water area via reducing ice cover, productivity at most trophic levels is likely to increase. In the Chukchi, warming should also reduce sea ice cover, permitting a longer production season. However, the shallow northern Bering and Chukchi Seas are expected to continue to be ice-covered in winter, so water there will continue to be cold in winter and spring, and is likely to continue to be a barrier to the movement of temperate fish into the Chukchi Sea. Thus, it is unlikely that large populations of boreal fish species will become established in this Arctic marginal sea. © 2012 Elsevier B.V

    Obtusoecia (Halocyprida: Myodocopa: Ostracoda) a bipolar planktonic oceanic genus. Taxonomy, bathymetry and zoogeographical distribution

    No full text
    Full detailed descriptions of the two species of Obtusoecia, one of two plankton ichalocyprid ostracod genera that are bipolar, demonstrate that the taxonomic separation of these two forms formerly considered to be conspecific, is valid. The segregation of the genus from Porroecia is also validated. The value of characters of limbs other than the first and second antennae particularly in defining halocyprid genera is emphasised. Zoogeographical distributions of the two species based on comprehensive compilations of both published and unpublished data show that O. obtusata is confined to the North Atlantic, whereas O. antarctica has an Antarctic circumpolar distribution. Detailed bathymetric profiles show that O. obtusata is a shallow mesopelagic species that is overwhelmingly dominant at depths of 50–200 m in subpolar seas, and shows limited ability to submerge at lower depths, so that it is restricted to seas that have a marked seasonal cycle of turn-over and stratification. It is postulated that the bathymetric distributions of the two species are similar, also that O. antarcticais more likely to be ancestral to O. obtusata than vice versa

    Contrasting zooplankton communities (Arctic vs. Atlantic) in the European Arctic Marginal Ice Zone

    No full text
    Relationships between the zooplankton community andv arious environmental factors (salinity, temperature, sampling depth and bottom depth) were established in the European Arctic Marginal Ice Zone (MIZ) using multivariate statistics. Three main zooplankton communities were identified: an Atlantic Shallow Community (AtSC), an Arctic Shallow Community (ArSC) anda Deep Water Community (DWC). All species belonging to AtSC andArSC were pooledandtheir relative abundances in the total zooplankton calculated with respect to a particular layer (surface, midan dd eep strata), regions (the Barents Sea, Fram Strait andt he waters off northern Svalbard), years (1999 or 2003) and seasons (spring or autumn). Mapping of the proportions of Arctic andA tlantic species ledto the conclusion that zooplankton from the MIZs do not exactly follow complementary water masses, although the general pattern of AtSC and ArSC dominance accords with the physical oceanography of the study area (AtW and ArW respectively). The mid layer proved to be a better predictor of mesozooplankton distribution than the unstable conditions near the surface

    A year round comparative study on the population structures of pelagic Ostracoda in Admiralty Bay (Southern Ocean)

    No full text
    The population structures of the three dominant planktonic halocyprid Ostracoda species in Admiralty Bay (King George Island, Antarctic Peninsula) were followed throughout the course of a year in zooplankton samples collected once every three weeks from February 1993 to January 1994. The sampling was conducted at two stations: A in the central part of Admiralty Bay (400–0 m) and B in the entrance to the Bay from the Bransfield Strait (400–0 m). The samples were taken using a WP-2 net (square mouth opening of 0.196 m2 and 200 ?m mesh) hauled vertically from the bottom to the surface. Changes in the age structures of the populations of three species Alacia belgicae, Alacia hettacra and Metaconchoecia isocheira were tracked. Their population structures differed. The changes in A. belgicae suggested that it reproduces year-round, whereas both A. hettacra and M. isocheira probably complete their life cycles within a year. The cycle in A. hettacra probably starts earlier in the year than that of M. isocheira. Populations of A. belgicae and M. isocheira were more advanced in their development at station A, than at station B, but A. hettacra was more advanced at the latter. Advection appears to play a role in maintaining the populations in the shelf waters. Comparisons between populations in the shelf area (Admiralty Bay) and in open ocean waters (Croker Passage) show that the M. isocheira population is older in shelf water whereas the age structure of A. belgicae population is not influenced by the locality

    Mid-summer mesozooplankton biomass, its size distribution, and estimated production within a glacial Arctic fjord (Hornsund, Svalbard)

    No full text
    Author's accepted version (post-print).NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Marine Systems (2014). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Marine Systems (2014), 137. doi: http://dx.doi.org/10.1016/j.jmarsys.2014.04.010
    corecore