289 research outputs found

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Dysregulated flow-mediated vasodilatation in the human placenta in fetal growth restriction

    Get PDF
    Increased vascular resistance and reduced fetoplacental blood flow are putative aetiologies in the pathogenesis of fetal growth restriction (FGR); however, the regulating sites and mechanisms remain unclear. We hypothesised that placental vessels dictate fetoplacental resistance and in FGR exhibit endothelial dysfunction and reduced flow-mediated vasodilatation (FMVD). Resistance was measured in normal pregnancies (n = 10) and FGR (n = 10) both in vivo by umbilical artery Doppler velocimetry and ex vivo by dual placental perfusion. Ex vivo FMVD is the reduction in fetal-side inflow hydrostatic pressure (FIHP) following increased flow rate. Results demonstrated a significant correlation between vascular resistance measured in vivo and ex vivo in normal pregnancy, but not in FGR. In perfused FGR placentas, vascular resistance was significantly elevated compared to normal placentas (58 ± 7.7 mmHg and 36.8 ± 4.5 mmHg, respectively; 8 ml min−1; means ± SEM; P < 0.0001) and FMVD was severely reduced (3.9 ± 1.3% and 9.1 ± 1.2%, respectively). In normal pregnancies only, the highest level of ex vivo FMVD was associated with the lowest in vivo resistance. Inhibition of NO synthesis during perfusion (100 μM L-NNA) moderately elevated FIHP in the normal group, but substantially in the FGR group. Human placenta artery endothelial cells from FGR groups exhibited increased shear stress-induced NO generation, iNOS expression and eNOS expression compared with normal groups. In conclusion, fetoplacental resistance is determined by placental vessels, and is increased in FGR. The latter also exhibit reduced FMVD, but with a partial compensatory increased NO generation capacity. The data support our hypothesis, which highlights the importance of FMVD regulation in normal and dysfunctional placentation

    Physiological IRE-1-XBP-1 and PEK-1 Signaling in Caenorhabditis elegans Larval Development and Immunity

    Get PDF
    Endoplasmic reticulum (ER) stress activates the Unfolded Protein Response, a compensatory signaling response that is mediated by the IRE-1, PERK/PEK-1, and ATF-6 pathways in metazoans. Genetic studies have implicated roles for UPR signaling in animal development and disease, but the function of the UPR under physiological conditions, in the absence of chemical agents administered to induce ER stress, is not well understood. Here, we show that in Caenorhabditis elegans XBP-1 deficiency results in constitutive ER stress, reflected by increased basal levels of IRE-1 and PEK-1 activity under physiological conditions. We define a dynamic, temperature-dependent requirement for XBP-1 and PEK-1 activities that increases with immune activation and at elevated physiological temperatures in C. elegans. Our data suggest that the negative feedback loops involving the activation of IRE-1-XBP-1 and PEK-1 pathways serve essential roles, not only at the extremes of ER stress, but also in the maintenance of ER homeostasis under physiological conditions.National Institutes of Health (U.S.) (grant R01-GM084477

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Genetic Modulation of Rpd3 Expression Impairs Long-Term Courtship Memory in Drosophila

    Get PDF
    There is increasing evidence that regulation of local chromatin structure is a critical mechanism underlying the consolidation of long-term memory (LTM), however considerably less is understood about the specific mechanisms by which these epigenetic effects are mediated. Furthermore, the importance of histone acetylation in Drosophila memory has not been reported. The histone deacetylase (HDAC) Rpd3 is abundant in the adult fly brain, suggesting a post-mitotic function. Here, we investigated the role of Rpd3 in long-term courtship memory in Drosophila. We found that while modulation of Rpd3 levels predominantly in the adult mushroom body had no observed impact on immediate recall or one-hour memory, 24-hour LTM was severely impaired. Surprisingly, both overexpression as well as RNAi-mediated knockdown of Rpd3 resulted in impairment of long-term courtship memory, suggesting that the dose of Rpd3 is critical for normal LTM

    Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The promyelocytic leukemia (PML) protein participates in a number of cellular processes, including transcription regulation, apoptosis, differentiation, virus defense and genome maintenance. This protein is structurally organized into a tripartite motif (TRIM) at its N-terminus, a nuclear localization signal (NLS) at its central region and a C-terminus that varies between alternatively spliced isoforms. Most PML splice variants target the nucleus where they define sub-nuclear compartments termed PML nuclear bodies (PML NBs). However, PML variants that lack the NLS are also expressed, suggesting the existence of PML isoforms with cytoplasmic functions. In the present study we expressed PML isoforms with a mutated NLS in U2OS cells to identify potential cytoplasmic compartments targeted by this protein.</p> <p>Results</p> <p>Expression of NLS mutated PML isoforms in U2OS cells revealed that PML I targets early endosomes, PML II targets the inner nuclear membrane (partially due to an extra NLS at its C-terminus), and PML III, IV and V target late endosomes/lysosomes. Clustering of PML at all of these subcellular locations depended on a functional TRIM domain.</p> <p>Conclusions</p> <p>This study demonstrates the capacity of PML to form macromolecular protein assemblies at several different subcellular sites. Further, it emphasizes a role of the variable C-terminus in subcellular target selection and a general role of the N-terminal TRIM domain in promoting protein clustering.</p

    The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC) in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta) family including activin A (ActA) and inhibin A (InA) are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype.</p> <p>Methods</p> <p>To test this hypothesis we generated iDCs from peripheral-blood-monocytes and exposed them to TGF-beta1, ActA, as well as InA and Dexamethasone (Dex) as controls.</p> <p>Results</p> <p>Both glycoprotein-hormones prevented up-regulation of HLA-DR during cytokine-induced DC maturation similar to Dex but did not influence the expression of CD 40, CD 83 and CD 86. Visualization of the F-actin cytoskeleton confirmed that the DCs retained a partially immature phenotype under these conditions. The T-cell stimulatory capacity of DCs was reduced after ActA and InA exposure while the secretion of cytokines and chemokines was unaffected.</p> <p>Conclusion</p> <p>These findings suggest that ActA and InA interfere with selected aspects of DC maturation and may thereby help preventing activation of allogenic T-cells by the embryo. Thus, we have identified two novel members of the TGF-beta superfamily that could promote the generation of tolerance-inducing DCs.</p
    corecore