2,363 research outputs found

    The most ancient spiral galaxy: a 2.6-Gyr-old disk with a tranquil velocity field

    Full text link
    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z=2.54z=2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳2z\gtrsim2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (∼\sim 400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ±\pm 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ±\pm 2 M⊙M_{\odot} yr−1^{-1}, a stellar mass of 109.8±0.3^{9.8 \pm 0.3}M⊙M_{\odot} and a half-light radius of r1/2=2.6±0.7r_{1/2}=2.6 \pm 0.7 kpc, typical of a main-sequence star-forming (SF) galaxy at z∼2z\sim2. However, the H\alpha\ kinematics show a surprisingly tranquil velocity field with an ordered rotation (VcV_{\rm c} = 200 ±\pm 12 km/s) and uniformly small velocity dispersions (Vσ,meanV_{\rm \sigma, mean} = 23 ±\pm 4 km/s and Vσ,outer−diskV_{\rm \sigma, outer-disk} = 15 ±\pm 2 km/s). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳2z\gtrsim2 that mark the formation epoch of thin disks. Future observations with JWST will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.Comment: 18 pages, 13 figures, 1 table; accepted for publication in Ap

    How do dwarf galaxies acquire their mass & when do they form their stars?

    Full text link
    We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger trees, to predict when they form their stars. With the first approach, we show that the large majority of galaxies within group- and cluster-mass halos have acquired the bulk of their stellar mass through gas accretion and not via galaxy mergers. We deduce that most dwarf ellipticals are not built up by galaxy mergers. With the second approach, we constrain the star formation histories of dwarfs by requiring that star formation must occur within halos of a minimum circular velocity set by the evolution of the temperature of the IGM, starting before the epoch of reionization. We qualitatively reproduce the downsizing trend of greater ages at greater masses and predict an upsizing trend of greater ages as one proceeds to masses lower than m_crit. We find that the fraction of galaxies with very young stellar populations (more than half the mass formed within the last 1.5 Gyr) is a function of present-day mass in stars and cold gas, which peaks at 0.5% at m_crit=10^6-8 M_Sun, corresponding to blue compact dwarfs such as I Zw 18. We predict that the baryonic mass function of galaxies should not show a maximum at masses above 10^5.5, M_Sun, and we speculate on the nature of the lowest mass galaxies.Comment: 6 pages, to appear in "A Universe of Dwarf Galaxies: Observations, Theories, Simulations", ed. M. Koleva, P. Prugniel & I. Vauglin, EAS Series (Paris: EDP

    Gravity-driven Lyman-alpha blobs from cold streams into galaxies

    Full text link
    We use high-resolution cosmological hydrodynamical AMR simulations to predict the characteristics of La emission from the cold gas streams that fed galaxies in massive haloes at high redshift. The La luminosity in our simulations is powered by the release of gravitational energy as gas flows from the intergalactic medium into the halo potential wells. The UV background contributes only <20% to the gas heating. The La emissivity is due primarily to electron-impact excitation cooling radiation in gas ~2x10^4K. We calculate the La emissivities assuming collisional ionisation equilibrium (CIE) at all gas temperatures. The simulated streams are self-shielded against the UV background, so photoionisation and recombination contribute negligibly to the La line formation. We produce theoretical maps of the La surface brightnesses, assuming that ~85% of the La photons are directly observable. We find that typical haloes of mass Mv~10^12-13 Msun at z~3 emit as La blobs (LABs) with luminosities 10^43-44 erg/s. Most of the La comes from the extended narrow, partly clumpy, inflowing, cold streams that feed the growing galaxies. The predicted LAB morphology is therefore irregular, with dense clumps and elongated extensions. The linewidth is expected to range from 10^2 to more than 10^3 km/s with a large variance. The typical La surface brightness profile is proportional to r^-1.2 where r is the distance from the halo centre. Our simulated LABs are similar in luminosity, morphology and extent to the observed LABs, with distinct kinematic features. The predicted La luminosity function is consistent with observations, and the predicted areas and linewidths roughly recover the observed scaling relations. This mechanism for producing LABs appears inevitable in many high-z galaxies. Some of the LABs may thus be regarded as direct detections of the cold streams that drove galaxy evolution at high z.Comment: 21 pages, 20 figures, final version accepted for publication in MNRA

    Analytic and numerical realisations of a disk galaxy

    Get PDF
    Recent focus on the importance of cold, unshocked gas accretion in galaxy formation -- not explicitly included in semi-analytic studies -- motivates the following detailed comparison between two inherently different modelling techniques: direct hydrodynamical simulation and semi-analytic modelling. By analysing the physical assumptions built into the Gasoline simulation, formulae for the emergent behaviour are derived which allow immediate and accurate translation of these assumptions to the Galform semi-analytic model. The simulated halo merger history is then extracted and evolved using these equivalent equations, predicting a strikingly similar galactic system. This exercise demonstrates that it is the initial conditions and physical assumptions which are responsible for the predicted evolution, not the choice of modelling technique. On this level playing field, a previously published Galform model is applied (including additional physics such as chemical enrichment and feedback from active galactic nuclei) which leads to starkly different predictions.Comment: 15 pages, 15 figure

    Cold streams in early massive hot haloes as the main mode of galaxy formation

    Full text link
    The massive galaxies in the young universe, ten billion years ago, formed stars at surprising intensities. Although this is commonly attributed to violent mergers, the properties of many of these galaxies are incompatible with such events, showing gas-rich, clumpy, extended rotating disks not dominated by spheroids (Genzel et al. 2006, 2008). Cosmological simulations and clustering theory are used to explore how these galaxies acquired their gas. Here we report that they are stream-fed galaxies, formed from steady, narrow, cold gas streams that penetrate the shock-heated media of massive dark matter haloes (Dekel & Birnboim 2006; Keres et al. 2005). A comparison with the observed abundance of star-forming galaxies implies that most of the input gas must rapidly convert to stars. One-third of the stream mass is in gas clumps leading to mergers of mass ratio greater than 1:10, and the rest is in smoother flows. With a merger duy cycle of 0.1, three-quarters of the galaxies forming stars at a given rate are fed by smooth streams. The rarer, submillimetre galaxies that form stars even more intensely are largely merger-induced starbursts. Unlike destructive mergers, the streams are likely to keep the rotating disk configuration intact, although turbulent and broken into giant star-forming clumps that merge into a central spheroid (Noguchi 1999; Genzel et al. 2008, Elmegreen, Bournaud & Elmegreen 2008, Dekel, Sari & Ceverino 2009). This stream-driven scenario for the formation of disks and spheroids is an alternative to the merger picture.Comment: Improved version, 25 pages, 13 figures, Letter to Nature with Supplementary Informatio

    On the Origin of the Galaxy Star-Formation-Rate Sequence: Evolution and Scatter

    Full text link
    We use a semi-analytic model for disk galaxies to explore the origin of the time evolution and small scatter of the galaxy SFR sequence -- the tight correlation between star-formation rate (SFR) and stellar mass (M_star). The steep decline of SFR from z~2 to the present, at fixed M_star, is a consequence of the following: First, disk galaxies are in a steady state with the SFR following the net (i.e., inflow minus outflow) gas accretion rate. The evolution of the SFR sequence is determined by evolution in the cosmological specific accretion rates, \propto (1+z)^{2.25}, but is found to be independent of feedback. Although feedback determines the outflow rates, it shifts galaxies along the SFR sequence, leaving its zero point invariant. Second, the conversion of accretion rate to SFR is materialized through gas density, not gas mass. Although the model SFR is an increasing function of both gas mass fraction and gas density, only the gas densities are predicted to evolve significantly with redshift. Third, star formation is fueled by molecular gas. Since the molecular gas fraction increases monotonically with increasing gas density, the model predicts strong evolution in the molecular gas fractions, increasing by an order of magnitude from z=0 to z~2. On the other hand, the model predicts that the effective surface density of atomic gas is ~10 M_sun pc^{-2}, independent of redshift, stellar mass or feedback. Our model suggests that the scatter in the SFR sequence reflects variations in the gas accretion history, and thus is insensitive to stellar mass, redshift or feedback. The large scatter in halo spin contributes negligibly, because it scatters galaxies along the SFR sequence. An observational consequence of this is that the scatter in the SFR sequence is independent of the size (both stellar and gaseous) of galaxy disks.Comment: 24 pages, 19 figures, accepted to MNRAS, minor changes to previous versio

    Feedback and Recycled Wind Accretion: Assembling the z=0 Galaxy Mass Function

    Get PDF
    We analyse cosmological hydrodynamic simulations that include observationally-constrained prescriptions for galactic outflows. If these simulated winds accurately represent winds in the real Universe, then material previously ejected in winds provides the dominant source of gas infall for new star formation at redshifts z<1. This recycled wind accretion, or wind mode, provides a third physically distinct accretion channel in addition to the "hot" and "cold" modes emphasised in recent theoretical studies. Because of the interaction between outflows and gas in and around halos, the recycling timescale of wind material (t_rec) is shorter in higher-mass systems, which reside in denser gaseous environments. In these simulations, this differential recycling plays a central role in shaping the present-day galaxy stellar mass function (GSMF). If we remove all particles that were ever ejected in a wind, then the predicted GSMFs are much steeper than observed; galaxy masses are suppressed both by the direct removal of gas and by the hydrodynamic heating of their surroundings, which reduces subsequent infall. With wind recycling included, the simulation that incorporates our favoured momentum-driven wind scalings reproduces the observed GSMF for stellar masses 10^9 < M < 5x10^10 Msolar. At higher masses, wind recycling leads to excessive galaxy masses and excessive star formation rates relative to observations. In these massive systems, some quenching mechanism must suppress the re-accretion of gas ejected from star-forming galaxies. In short, as has long been anticipated, the form of the GSMF is governed by outflows; the unexpected twist here for our simulated winds is that it is not primarily the ejection of material but how the ejected material is re-accreted that governs the GSMF.Comment: 16 pages, 7 figures, accepted by MNRA

    Reporting interventions in trials evaluating cognitive rehabilitation in people with Multiple Sclerosis: a systematic review

    Get PDF
    Objective: To determine the quantity and quality of description of cognitive rehabilitation for cognitive deficits in people with Multiple Sclerosis, using a variety of published checklists, and suggest ways of improving the reporting of these interventions. Data sources: Ten electronic databases were searched, including MEDLINE, EMBASE, CINAHL and PsycINFO, from inception to May 2017. Grey literature databases, trials registers, reference lists and author citations were also searched. Review methods: Papers were included if participants were people with multiple sclerosis aged 18 years and over, and if the effectiveness of cognitive rehabilitation in improving functional ability for memory, attention or executive dysfunction, with or without a control group, was being evaluated. Results: Fifty-four studies were included in this review. The reporting of a number of key aspects of cognitive rehabilitation was poor. This was particularly in relation to content of interventions (reported completely in 26 of the 54 studies), intervention procedures (reported completely in 16 of the 54 studies), delivery mode (reported completely in 24 of the 54 studies) and intervention mechanism of action (reported completely in 21 of the 54 studies). Conclusion: The quality of reporting of cognitive rehabilitation for memory, attention and executive function for multiple sclerosis, across a range of study designs, is poor. Existing reporting checklists do not adequately cover aspects relevant to cognitive rehabilitation, such as the approaches used to address cognitive deficits. Future checklists could consider these aspects we have identified in this review

    Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences

    Get PDF
    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.
    • …
    corecore