298 research outputs found

    Mere social knowledge impacts children’s consumption and categorization of foods

    Full text link
    How does social information affect the perception of taste early in life? Does mere knowledge of other people’s food preferences impact children’s own experience when eating? In Experiment 1, 5‐ and 6‐year‐old children consumed more of a food described as popular with other children than a food that was described as unpopular with other children, even though the two foods were identical. In Experiment 2, children ate more of a food described as popular with children than a food described as popular with adults. Experiment 3 tested whether different perceptual experiences of otherwise identical foods contributed to the mechanisms underlying children’s consumption. After sampling both endpoints of a sweet‐to‐sour range (applesauce with 0 mL or 5mL of lemon juice added), children were asked to taste and categorize applesauce samples with varying amounts of lemon juice added. When classifying ambiguous samples that were near the midpoint of the range (2 mL and 3 mL), children were more likely to categorize popular foods as sweet as compared to unpopular foods. Together, these findings provide evidence that social information plays a powerful role in guiding children’s consumption and perception of foods. Broader links to the sociality of food selection are discussed.We measured 5‐ and 6‐year‐old children’s consumption and perception of foods that varied only in the social messages describing them. Children ate more of a food that was described as popular than a food that was described as unpopular and evaluated the popular food’s flavor more positively (Experiment 1), and ate more of a food that was described as popular with children than a food that was described as popular with adults (Experiment 2).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145541/1/desc12627.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145541/2/desc12627_am.pd

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Relationships of psychosocial factors to dietary intakes of preadolescent girls from diverse backgrounds

    Full text link
    Family and personal factors that might be related to the development of food selection and eating patterns have not been well studied in children. The aim of this study was to examine whether such psychosocial factors differ in girls from four culturally diverse Girl Scout troops and how these factors are associated with dietary intakes. The social measures and dietary assessments were all obtained at baseline on subjects who were participating in a small nutrition education programme. The programme enrolled girls and one parent for each girl from four Girl Scout troops in Detroit, Michigan. The social factors assessed included girls’ emotionality and use of food to regulate emotions, their general attitudes about health, eating and body image, and self-perceptions of their competence. Dietary intakes also were assessed in both the girls and their parents. There were large differences between troops in ethnicity and parent education level, and there were differences in dietary intakes as well. The psychosocial factors assessed in this study, however, did not differ significantly by troop. When the psychosocial factors were examined for their relationships to dietary factors, there was an indication that families which reported higher self-competence and academic competence in their daughters also had healthier eating patterns in their daughters. This was a small study, but the data suggest that simple comparisons between ethnic groups may not adequately capture the complexity of family and psychosocial factors contributing to good dietary practices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73597/1/j.1740-8709.2006.00051.x.pd

    Children\u27s Consumption of Fruits and Vegetables: Do School Environment and Policies Affect Choices at School and Away from School?

    Get PDF
    School environment and policies may affect children\u27s ability to make healthy food choices both at and away from school. Using data from the third School Nutrition Dietary Assessment Study conducted in 2005 we estimate the effect of environment and policies on children\u27s fruit and vegetable intakes. We use an instrumental variable approach to control for the endogeneity of participation in the National School Lunch Program (NSLP). On an average school day, school lunch participants consume more fruits and vegetables, including relatively more at school and less away from school compared to nonparticipants. Meal policies had little effect on NSLP participation itself. Policies that restrict high fat milks or desserts and restrict the sale of competitive foods are associated with greater fruit and/or vegetable intake at school; some policies affected consumption at home as well

    Portion Size: What We Know and What We Need to Know

    Get PDF
    There is increasing evidence that the portion sizes of many foods have increased and in a laboratory at least this increases the amount eaten. The conclusions are, however, limited by the complexity of the phenomenon. There is a need to consider meals freely chosen over a prolonged period when a range of foods of different energy densities are available. A range of factors will influence the size of the portion size chosen: amongst others packaging, labeling, advertising, and the unit size rather than portion size of the food item. The way portion size interacts with the multitude of factors that determine food intake needs to be established. In particular, the role of portion size on energy intake should be examined as many confounding variables exist and we must be clear that it is portion size that is the major problem. If the approach is to make a practical contribution, then methods of changing portion sizes will need to be developed. This may prove to be a problem in a free market, as it is to be expected that customers will resist the introduction of smaller portion sizes, given that value for money is an important motivator

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √s = 13 TeV during 2016, 2017 and 2018. The biases are determined using Z → μ+μ- decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z → μ+μ- mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Observation of photon-induced W<sup>+</sup>W<sup>−</sup> production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    This letter reports the observation of photon-induced production of W-boson pairs, γγ→ WW. The analysis uses 139 fb-1 of LHC proton-proton collision data taken at √s=13 TeV recorded by the ATLAS experiment during the years 2015-2018. The measurement is performed selecting one electron and one muon, corresponding to the decay of the diboson system as WW→e±νμ∓ν final state. The background-only hypothesis is rejected with a significance of well above 5 standard deviations consistent with the expectation from Monte Carlo simulation. A cross section for the γγ→ WW process of 3.13±0.31(stat.)±0.28(syst.) fb is measured in a fiducial volume close to the acceptance of the detector, by requiring an electron and a muon of opposite signs with large dilepton transverse momentum and exactly zero additional charged particles. This is found to be in agreement with the Standard Model prediction

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    In a special run of the LHC with β⋆=2.5 km, proton–proton elastic-scattering events were recorded at s√=13 TeV with an integrated luminosity of 340 μb−1 using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam t variable in the range from −t=2.5⋅10−4 GeV2 to −t=0.46 GeV2 using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section σtot, parameters of the nuclear slope, and the ρ-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit t→0. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the t-dependence. The results for σtot and ρ are σtot(pp→X)=104.7±1.1 mb ,ρ=0.098±0.011. The uncertainty in σtot is dominated by the luminosity measurement, and in ρ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.publishedVersio

    Measurement of the CKM angle γ in the B0→DK *0 channel using self-conjugate D→ KS0h+ h- decays

    Get PDF
    A model-independent study of CP violation in B-0 -&gt; DK (*0) decays is presented using data corresponding to an integrated luminosity of 9 fb(-1) collected by the LHCb experiment at centre-of-mass energies of v s = 7, 8 and 13TeV. The CKM angle. is determined by examining the distributions of signal decays in phase-space bins of the self-conjugate D. K(S)(0)h(+) h(-) decays, where h = p, K. Observables related to CP violation are measured and the angle. is determined to be. = (49+22 -19).. Measurements of the amplitude ratio and strong-phase difference between the favoured and suppressed B-0 decays are also presented
    corecore