131 research outputs found

    QUANTITATIVE ANALYSIS OF REPAIRED AND UNREPAIRED DAMAGE TO TRILOBITES FROM THE CAMBRIAN (STAGE 4, DRUMIAN) IBERIAN CHAINS, NE SPAIN

    Get PDF
    Repaired fossil skeletons provide the opportunity to study predation rates, repair mechanisms, and ecological interactions in deep time. Trilobites allow the study of repaired damage over long time periods and large geographic areas due to their longevity as a group, global distribution, and well-preserved mineralized exoskeletons. Repair frequencies on trilobites from three sites representing offshore marine environments in the Iberian Chains (Spain) show no injuries on 45 complete redlichiid thoraces from Minas Tierga (Huérmeda Formation, Cambrian Series 2, Stage 4), or 23 complete Eccaparadoxides pradoanus thoraces from Mesones de Isuela (Murero Formation, Cambrian Series 3, Drumian). Ten injuries on 69 E. pradoanus thoraces from Purujosa (Murero Formation, Cambrian Series 3, Drumian) were noted. There is no evidence for laterally asymmetric predation or size selection on the trilobites in this study. Weak evidence for selection for the rear of the thorax is documented. A series of injured trilobites illustrates four stages of the healing process. Analysis of injury locations and frequency suggests that injuries to these trilobites are predatory in origin. Semilandmark analysis of previously described exoskeletons with unrepaired damage assigned to the ichnotaxon Bicrescomanducator serratus alongside newly collected damaged exoskeletons from Purujosa (Mansilla and Murero Formations, Stage 5, Drumian), Mesones de Isuela (Murero Formation, Drumian), and Minas Tierga (Huérmeda Formation, Stage 4) found that shapes of biotic and abiotic breaks could not be distinguished.Department of Zoology, University of Oxford, Reino UnidoInstitute of Earth Sciences, University of Lausanne, SuizaPaleoscience Research Centre School of Environmental and Rural Science, University of New England, AustraliaUnidad de Zaragoza, Instituto Geológico y Minero de España, EspañaUnidad Asociada en Ciencias de la Tierra, Universidad de Zaragoza, Españ

    A new bilaterally injured trilobite presents insight into attack patterns of Cambrian predators

    Get PDF
    Durophagous predation in the Cambrian is typically recorded as malformed shells and trilobites, with rarer evidence in the form of coprolites and shelly gut contents. Reporting novel evidence for shell-crushing further expands the understanding of where and when in the Cambrian durophagy was present. To expand the current documentation and present new records of malformed trilobites from the Cambrian of China, we present an injured Redlichia (Pteroredlichia) chinensis from the lower Cambrian Balang Formation, western Hunan, South China. The specimen has two distinct injuries along the thorax. The injuries show different degrees of regeneration, suggesting that the specimen was attacked twice. We propose that the individual may have been targeted more readily for the second attack. This predatory approach would have been highly energy efficient, maximizing net energy gain during the attack

    New austrolimulid from Russia supports role of Early Triassic horseshoe crabs as opportunistic taxa

    Get PDF
    Horseshoe crabs are extant marine euchelicerates that have a fossil record extending well into the Palaeozoic. Extreme xiphosurid morphologies arose during this evolutionary history. These forms often reflected the occupation of freshwater or marginal conditions. This is particularly the case for Austrolimulidae—a xiphosurid family that has recently been subject to thorough taxonomic examination. Expanding the austrolimulid record, we present new material from the Olenekian-aged Petropavlovka Formation in European Russia and assign this material to Attenborolimulus superspinosus gen. et sp. nov. A geometric morphometric analysis of 23 horseshoe crab genera illustrates that the new taxon is distinct from limulid and paleolimulid morphologies, supporting the assignment within Austrolimulidae. In considering Triassic austrolimulids, we suggest that the hypertrophy or reduction in exoskeletal sections illustrate how species within the family evolved as opportunistic taxa after the end-Permian extinction

    Evidence for Placoderms from the Mid-Palaeozoic Sandon Beds of North-western New South Wales, Australia

    Get PDF
    Armoured jawed fishes known as placoderms are a well-documented group with a fossil record spanning the Silurian to end-Devonian. They have a global distribution and a marked diversity within Devonian deposits of Australia. Despite their notable Gondwanan fossil record, new material is occasionally identified and can present important stratigraphic information for otherwise under-explored deposits. A unique find from the so-called Sandon beds is presented here and expands the record of placoderms from New South Wales. This specimen presents insight into a previously unknown macrofossil record from the deposit and suggests a more Devonian age for the unit, rather than the previously suggested Carboniferous date. We also summarise the macrovertebrate record of Devonian placoderms from Australia, highlighting and discussing changes in their Gondwanan taxonomic diversity across the time period

    On Paleolimulus from the Mazon Creek Konservat-Lagerstätte

    Get PDF
    Sur Paleolimulus de la Konservat-Lagerstätte de Mazon Creek. Les xiphosuridés, aussi appelés limules, incluent des chélicérates actuels dont le registre fossile remonte à l'Ordovicien. Malgré les traces de leur longue histoire évolutive, les xiphosuridés sont rarement préservés dans les assemblages fossiles en raison de leur exosquelette cuticulaire non minéralisé. Cependant, dans des circonstances exceptionnelles, une abondance de spécimens de xiphosurides fossiles a été documentée. Le Konservat-Lagerstätte de Mazon Creek, d'âge Moscovien, représente un tel dépôt de fossiles qui présente une grande abondance et diversité de xiphosuridés. Bien que relativement bien connus, les spécimens de Paleolimulus de Mazon Creek n'ont pas encore fait l'objet d'un examen taxonomique approfondi. A la lumière des efforts récents pour organiser Paleolimulus, nous revisitons ce matériel non décrit, érigeons Paleolimulus mazonensis n. sp., et présentons une analyse phylogénétique qui place P. mazonensis n. sp. comme un taxon frère de P. signata (Beecher, 1904). La paléoécologie et l'ontogenèse possible de P. mazonensis n. sp. sont présentées, ainsi que des perspectives de recherches futures pour mieux comprendre ce genre xiphosuride fossile emblématique

    An earliest Triassic age for Tasmaniolimulus and comments on synchrotron tomography of Gondwanan horseshoe crabs

    Get PDF
    Constraining the timing of morphological innovations within xiphosurid evolution is central for understanding when and how such a long-lived group exploited vacant ecological niches over the majority of the Phanerozoic. To expand the knowledge on the evolution of select xiphosurid forms, we reconsider the four Australian taxa: Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victalimulus mcqueeni. In revisiting these taxa, we determine that, contrary to previous suggestion, T. patersoni arose after the Permian and the origin of over-developed genal spine structures within Austrolimulidae is exclusive to the Triassic. To increase the availability of morphological data pertaining to these unique forms, we also examined the holotypes of the four xiphosurids using synchrotron radiation X-ray tomography (SRXT). Such non-destructive, in situ imaging of palaeontological specimens can aid in the identification of novel morphological data by obviating the need for potentially extensive preparation of fossils from the surrounding rock matrix. This is particularly important for rare and/or delicate holotypes. Here, SRXT was used to emphasize A. fletcheri and T. patersoni cardiac lobe morphologies and illustrate aspects of the V. mcqueeni thoracetronic doublure, appendage impressions, and moveable spine notches. Unfortunately, the strongly compacted D. peetae precluded the identification of any internal structures, but appendage impressions were observed. The application of computational fluid dynamics to high-resolution 3D reconstructions are proposed to understand the hydrodynamic properties of divergent genal spine morphologies of austrolimulid xiphosurids

    Raptorial appendages of the Cambrian apex predator Anomalocaris canadensis are built for soft prey and speed

    Get PDF
    The stem-group euarthropod Anomalocaris canadensis is one of the largest Cambrian animals and is often considered the quintessential apex predator of its time. This radiodont is commonly interpreted as a demersal hunter, responsible for inflicting injuries seen in benthic trilobites. However, controversy surrounds the ability of A. canadensis to use its spinose frontal appendages to masticate or even manipulate biomineralized prey. Here, we apply a new integrative computational approach, combining threedimensional digital modelling, kinematics, finite-element analysis (FEA) and computational fluid dynamics (CFD) to rigorously analyse an A. canadensis feeding appendage and test its morphofunctional limits. These models corroborate a raptorial function, but expose inconsistencies with a capacity for durophagy. In particular, FEA results show that certain parts of the appendage would have experienced high degrees of plastic deformation, especially at the endites, the points of impact with prey. The CFD results demonstrate that outstretched appendages produced low drag and hence represented the optimal orientation for speed, permitting acceleration bursts to capture prey. These data, when combined with evidence regarding the functional morphology of its oral cone, eyes, body flaps and tail fan, suggest that A. canadensis was an agile nektonic predator that fed on soft-bodied animals swimming in a well-lit water column above the benthos. The lifestyle of A. canadensis and that of other radiodonts, including plausible durophages, suggests that niche partitioning across this clade influenced the dynamics of Cambrian food webs, impacting on a diverse array of organisms at different sizes, tiers and trophic levels

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore