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The stem-group euarthropod Anomalocaris canadensis is one of the largest
Cambrian animals and is often considered the quintessential apex predator
of its time. This radiodont is commonly interpreted as a demersal hunter,
responsible for inflicting injuries seen in benthic trilobites. However,
controversy surrounds the ability of A. canadensis to use its spinose frontal
appendages to masticate or even manipulate biomineralized prey. Here,
we apply a new integrative computational approach, combining three-
dimensional digital modelling, kinematics, finite-element analysis (FEA) and
computational fluid dynamics (CFD) to rigorously analyse an A. canadensis
feeding appendage and test itsmorphofunctional limits. Thesemodels corrobo-
rate a raptorial function, but expose inconsistencies with a capacity for
durophagy. In particular, FEA results show that certain parts of the appendage
would have experienced high degrees of plastic deformation, especially at
the endites, the points of impact with prey. The CFD results demonstrate that
outstretched appendages produced low drag and hence represented the
optimal orientation for speed, permitting acceleration bursts to capture prey.
These data, when combined with evidence regarding the functional mor-
phology of its oral cone, eyes, body flaps and tail fan, suggest that
A. canadensis was an agile nektonic predator that fed on soft-bodied animals
swimming in a well-lit water column above the benthos. The lifestyle of
A. canadensis and that of other radiodonts, including plausible durophages,
suggests that niche partitioning across this clade influenced the dynamics of
Cambrian food webs, impacting on a diverse array of organisms at different
sizes, tiers and trophic levels.
1. Introduction
The Cambrian explosion is epitomized by the development of the first complex
marine animal ecosystems and trophic differentiation [1–3], including a surge in
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Figure 1. Key examples of Anomalocaris canadensis specimens from the Cambrian (Miaolingian, Wuliuan) Burgess Shale of Canada that informed the frontal
appendage reconstruction. (a,b) Close-up of the head of a complete specimen, showing the maximum frontal appendage flexure. (a) ROMIP 51212b (counterpart).
(b) ROMIP 51212a ( part). (c) Pair of frontal appendages, with one preserved in dorsal view (arrowed) showing the dorsal expression of podomere articulations and
indicating a plausible width of the appendage. ROMIP 61650. (d,e) Large, exceptionally preserved frontal appendages. (d ) Specimen showing details of condyles,
endites and arthrodial membrane; this specimen was used to scale the finite element and computational fluid dynamic models. ROMIP 61675. (e) Two appendages
that show paired endites on each podomere and distal dorsal spines. ROMIP 62543. app, appendages; art, podomere articulation; con, condyle; ds, dorsal spine; end,
endite; eye, lateral compound eye; hea, head; me, membrane. Scale bars: (a,b) 10 mm; (c,e) 20 mm; (d ) 15 mm. (a,c) Imaged under water. (b,d,e) Imaged under
cross-polarized light. (d ) Image converted to greyscale.
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predation activity [4,5]. Exemplary among Cambrian
predators are the radiodonts—stem-group euarthropods
bearing a pair of large, arthrodized frontal appendages
and a ventral oral cone with tooth-like serrations—that are
often the largest animals within their respective ecosystems
[6–16]. Many radiodonts possess frontal appendages that
are considered to have been raptorial and able to capture,
manipulate and perhaps even masticate prey, before passing
food items to the mouth for further processing [6,17–22].
In this context, select radiodonts are hypothesized to have
been capable of shell-crushing (durophagous) predation
[21–23], but there is still uncertainty as to whether breaking
biomineralized prey was achievable using the frontal
appendages, paired gnathobase-like structures affiliated
with segments transitional between the head and trunk,
the oral cone, or a combination of these, depending on the
taxon [5,6,24–26].

Themost iconic radiodont,Anomalocaris canadensis from the
Cambrian (Miaolingian, Wuliuan) Burgess Shale of Canada
(figure 1), has long been suspected as a possible durophage,
especially preying upon trilobites [27–32]. Some studies [6,26]
have questioned the ability of the Anomalocaris oral cone
to crush biomineralized prey, whereas another explicitly
suggested that both the oral cone and frontal appendages
were involved in the flexing and eventual breakage of trilobite
exoskeletons [22]. Although recent three-dimensional (3D)
modelling has shown that A. canadensis frontal appendages
had a high degree of flexibility to possibly perform such a
task [18], the hypothesis that radiodont appendages functioned
the same way as modern raptorial euarthropod appendages
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[20] and were capable of inflicting damage to biomineralized
prey remains to be tested quantitatively.

Here, we provide an accurate 3D digital reconstruction of
an Anomalocaris canadensis frontal appendage based on excep-
tionally preserved specimens from the Burgess Shale [9]
(figure 1), and subject it to kinematic, biomechanical model-
ling using finite-element analysis (FEA) and computational
fluid dynamics (CFD). These quantitative analyses reveal
the morphofunctional capabilities and hydrodynamic per-
formance of the frontal appendages of this iconic Cambrian
apex predator, with important implications for Cambrian
ecosystems [6,7,9].
 pb
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2. Methods
(a) Modern analogues for kinematic models
Based on similarities in form and inferred function, Liu et al. [20]
suggested that the multi-segmented raptorial appendages of whip
scorpions (Uropygi) and whip spiders (Amblypygi) [20,33–36]
would be useful for understanding radiodont appendages. As
such, we developed kinematic models of Mastigoproctus giganteus
(Uropygi) and Heterophrynus elaphus (Amblypygi) as modern
analogues. We used one M. giganteus specimen housed in the
New England Natural History Arthropod collection (NENH-AR),
UniversityofNewEngland,Armidale,Australia, andoneH. elaphus
specimen housed in the Zoologische Staatssammlung Arthropod
Collection (ZSMA) Munich, Germany, to generate arachnid
kinematic models. Both specimens were scanned using micro-
computed tomography (micro-CT) at optimized conditions at
their respective institutions (see electronic supplementarymaterial,
data S1 for more details). Scans were imported into Mimics v. 23.0
(Materialise, Leuven, Belgium). Podomeres of the raptorial appen-
dages were separated with the ‘Segmenting’ tool, and muscles
and tendons were removed using the same tool. Segmentation
was conductedmanually, usingdensity difference andmorphology
of structures in the scan to identify separate podomeres and soft
tissue. Separated podomeres were exported as .STL files from
Mimics and imported into Geomagic Studio (www.3dsystems.
com) for smoothing. The smoothed .STL files were exported
as .OBJ files for kinematic analyses in Maya 2020 (Autodesk,
San Rafael).

(b) Anomalocaris appendage reconstructions
A3D reconstruction of theAnomalocaris canadensis raptorial appen-
dage was rendered in Zbrush (Pixologic Inc.). The reconstruction
was informed by direct examination of fossils, including speci-
mens preserved at various orientations in the rock matrix and
with different degrees of flexure, as well as previous appendage
reconstructions [6,9,37] (figure 1). To determine the relative pro-
portions of the podomeres, ratios were taken from the most
informative fossils (electronic supplementary material, data S2),
following a similar approach to De Vivo et al. [18]. Appendage
‘inflation’ was informed by examining specimens preserved at
oblique angles (e.g. Daley & Edgecombe [9], fig. 4.1; figure 1c).
This approach was needed as the fossils are two-dimensionally
preserved and the density difference between fossil and rock
matrix in Burgess Shale specimens gives insufficient contrast for
micro-CT scans. Although Chengjiang radiodonts (Cambrian
Series 2, Stage 3) have been successfully micro-CT scanned [38],
the entire appendage cannot be reproduced. As such, the
appendage would still need to be reconstructed, and likely
retro-deformed [39–41]. We did not reconstruct the arthrodial
membrane between podomeres as thismembranewould have con-
tracted and extended during appendage motion, and these details
cannot be accurately modelled with the available computational
capabilities. The reconstruction was exported as an .STL file from
Zbrush for import into Geomagic Studio, where it was converted
into an .OBJ file. This file was then exported for import into
Maya 2020.

(c) Kinematic models
The models of Anomalocaris and the modern analogues were
imported as .OBJ files into Autodesk Maya for kinematic analyses
[42,43]. Artificial rotation joints were assigned to podomere articu-
lations with the ‘X_ROMM’ add-on [43–45]. Bicondylar pivot and
hinge joints were constructed for the arachnids based on previous
studies [46–48]. While a pivot joint consists of two articulation
points across the podomere, a hinge joint consists of two articula-
tion points (condyles) in the same region, either side of the
articulation. Furthermore, this is a common joint type in euarthro-
pods [49,50]. For Anomalocaris, joints were constructed as
bicondylar hinge joints because this morphology is consistent
with the V-shaped regions of arthrodial membrane extended
between Anomalocaris canadensis podomeres (figure 1d,e). Joint
axes weremodelled as long cylinders, themost basic mathematical
joints. After building joints, the srjoints tool was used to deflect
podomeres in conjunction with adjacent segments (following
Schmidt et al. [43]). Maximum flexure was determined in
two ways:

(1) When all proximal and distal podomere margins were in con-
tact with each other—a conservative model of rotation.

(2) When podomeres were allowed to telescope—podomeres
could rotate under each other, following De Vivo et al. [18].
In this realistic model, maximum flexure was limited by
endite morphology.

Collision detection was done by visual assessment. Although
automatic clash detection can be conducted using a Boolean-
approach [51,52], we used a manual approach here as this
method is more accurate and precise for our analyses.

Podomeres 11–14 were considered one functional unit as
there is no clear fossil evidence (e.g. presence of arthrodial mem-
brane) to indicate they could move independently of each other
(figure 2). The maximum extension and flexure states of both
the modern analogues and Anomalocaris canadensis kinematic
models were exported as .STL files to generate 3D PDFs using
Tetra4D (Adobe Systems) (electronic supplementary material,
data S3–S5 and figures S1–S7). Further, the A. canadensis kin-
ematic models were used to inform the finite element and
computational fluid dynamic models.

(d) Finite-element analysis
Details of radiodont frontal appendage musculature, including for
Anomalocaris canadensis, are unknown, with the only described
internal structures being diffuse wide bands of dark material run-
ning dorsally along the length of the appendage and narrow dark
bands extending into the base of the ventral endites [9, fig. 13].
These were interpreted as possible cavities or chambers within
the appendage and are not thought to be musculature, owing to
the diffuse preservation that does not resemble the three-dimen-
sionality of musculature seen elsewhere on the A. canadensis
body [9]. These appendages have homonomous podomeres that
adduct in a rotational motion, as shown in the kinematic models
(figure 2) [18]. This contrasts with the arachnid appendages used
for the kinematic comparisons, as the raptorial appendages of
arachnids have fewer and more varied podomeres with a complex
combination of muscle groups [53]. As such, muscles in the
arachnid analogues are inappropriate for biomechanically model-
ling the A. canadensis frontal appendages. A more comparable
analogue for musculature is the oviger appendage of male pycno-
gonids [54], which has homonomous segments and singular,
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Figure 2. 3D kinematic models of the Anomalocaris canadensis appendage in comparison with Mastigoproctus giganteus (whip scorpion) and Heterophrynus elaphus
(whip spider) raptorial appendages. (a–e) Anomalocaris canadensis kinematic appendage models. (a) Model completely outstretched, colour coded for podomere
number. Lateral view. Electronic supplementary material, figure S1. (b–d ) Raptorial appendage maximally flexed. Electronic supplementary material, figure S2.
(b) Lateral view. (c) Oblique orientation. (d ) Anterior view. (e) Illustration of sequential appendage motion from outstretched to maximally flexed. ( f–i) Models
of M. giganteus. NENH-AR00011. ( f,h) Pedipalp outstretched. Electronic supplementary material, figure S3. ( f ) Dorsal view. (h) Medial view. (g,i) Pedipalp maximally
flexed. Electronic supplementary material, figure S4. (g) Dorsal view. (i) Medial view. ( j–m) Models of H. elaphus. ZSMA 20120286. ( j,k): Pedipalp outstretched.
Electronic supplementary material, figure S5. ( j ) Dorsal view. (k) Medial view. (l,m) Pedipalp maximally flexed. Electronic supplementary material, figure S6.
(l ) Dorsal view. (m) Medial view. Scale bars (a,b,d–m) 5 mm; (c) 10 mm. con, condyle. Reconstruction of Anomalocaris canadensis credited to Katrina Kenny.
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serially arranged flexor muscles [54]. Hence, for the biomechanical
models, we proposed that adduction of A. canadensis podomeres
used muscle groups that are analogous to muscles within
podomeres of pycnogonid ovigers [54]. We also modelled biologi-
cally realistic origin and insertion points of thesemuscles using the
origin and insertion points observed in pycnogonid ovigers to
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Figure 3. Theoretical biomechanical model and solved Anomalocaris canadensis FEMs showing von Mises (VM) brick stress maps in lateral view. (a) Proposed A.
canadensis model showing modelled muscle groups. (b) Anomalocaris canadensis model outstretched. (c) Anomalocaris canadensis completely flexed. Scale bars: all
10 mm. Arrows indicate constrained endites.
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model rotation of A. canadensis podomeres (figure 3a). It is impor-
tant to note that this is a simplifiedmodel, as levator and depressor
muscles may also have been present in the A. canadensis appen-
dages. However, as we lack any muscle information, we have
opted to present a model that requires the fewest assumptions.

For FEA, the kinematic models of Anomalocaris canadensis
showing the flexed and outstretched positions were imported
into Geomagic Studio and scaled to the size of ROMIP
61675 (figure 1d), one of the larger frontal appendages of A. cana-
densis. This scaling was performed to determine the strain that
one of the larger individuals would have experienced. These
models were then exported as .STL files for import into Materia-
lise 3-matic v. 12. Following the kinematic analyses, podomeres
1–10 were considered independent of each other, and podomeres
11–14 were considered one functional unit, as justified above.
These podomeres were then solid-meshed as independent homo-
geneous structures in tet-4 elements in 3-matic and exported as a
Nastran file for import into Strand7 (www.strand7.com) FEA
software, where the podomere material properties were
assigned. We used a Young’s modulus of 867 Nmm–2 (for scler-
otized cuticle: Dalingwater [55]) and a Poisson’s ratio of 0.3 (for
isometric cuticle; Van der Meijden et al. [56]). Proposed muscle
origins (figure 3a) were tessellated as a group of beam elements
onto the Nastran models within Strand7. Origins were con-
sidered on the internal surface of the dorsal section of
podomeres. Muscle forces were loaded onto three beams directed
toward the insertion points. These points were considered the
proximal-most ventral section of the subsequent podomere
(figure 3a) and the beams were used to model muscle bands.
Insertions are treated as single, static points at the beam termi-
nus. As the muscle forces are unknown, each beam was loaded
with an arbitrary force value of 1 N [57]. A hinge between each
podomere and the subsequent podomere was constructed
along the dorsal section of the models using two links, with
one link on each podomere where there was overlap between
podomeres. This imitates a simplified closure of the sections.
Finally, each endite between podomeres 1 and 11 was con-
strained in all directions at the most apical point. This
emulated a point of contact with prey. A colour-coded von
Mises (VM) microstrain map was generated after solving the
model. As in most comparative FEA studies of fossil taxa, the
results from the simulations are relative and are therefore not
indicative of absolute microstrain values [58]. The loaded
Strand7 models for the outstretched and flexed models are pre-
sented in electronic supplementary material, data S6 and
available from https://osf.io/pqc4r/.
(e) Computational fluid dynamics
The flexed, intermediate and outstretched models, as proposed
from the kinematic analyses of the Anomalocaris canadensis frontal
appendage, were imported into the open-source 3D computer
graphics software Blender v. 2.79 (www.blender.org) [59]. These
models were used as references for generating simplified appen-
dage models (excluding endites, which were added later)
through box modelling in Blender [60]. In each case, a cylinder
was taken as the base object, with vertices and edges of the cylin-
der fitted to the outline of the reference model in different
orientations through translation, rotation and scaling. Additional
elements were added through extrusion, and similarly translated,
rotated or scaled, until the entire appendage had beenmodelled in
this way. Visual inspection confirmed that the simplified Blender
models very closely resembled the original detailed appendage
models. Models were exported from Blender as .STL files and
then imported into Geomagic Studio, where they were converted
into NURBS surfaces (.IGS files) using the AutoSurface function.

The simplifiedappendagemodelswere imported into the simu-
lation software COMSOL Multiphysics v. 6 (www.comsol.com).
Endites, consisting of eccentric cones, were added to these models
using the geometry tools in COMSOL. Each appendage model
(electronic supplementary material, data S7) was then duplicated
to give a pair (with a spacing between the models of 15 mm,
based on figs 1–3 and 5 in [9], and fig. 5 in [61], scaled to the size
of large appendages), and placed in a computational domain. The
domain consisted of a cylinder measuring 240 mm in diameter
and 1800 mm in height, which extended at least 3× the length of
the models upstream, 10× the length of the models downstream
and 5× the size of themodels in all other directions. ABooleanoper-
ation was used to subtract the models from the domain, and the
material properties of liquidwater (density = 1000 kg m–3, dynamic
fluid viscosity = 0.001 kg m−1 s−1) were assigned to the space sur-
rounding the models. An inlet with a normal inflow velocity was
specified at one end of the domain and an outlet with a static
pressure equal to zero was defined at the opposing end. No-slip
boundaries were assigned to the model walls, with slip boundaries
used for the sides of thedomain. Previouswork suggests thatAnom-
alocaris canadensis predominantly fed on prey in open waters [18],
and so we assumed the animal was swimming well above the sea-
floor (and thus not influenced by the ground effect) in all our
analyses. The domain was meshed using free tetrahedral elements,
with a refinement area used to create a finer mesh in parts of the
domain close to the models. A sensitivity analysis was carried out
using the outstretched appendagemodels to determine the coarsest
mesh at which the results (i.e. drag forces) were independent of the
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mesh size (i.e. less than 1%difference from the finest mesh, see elec-
tronic supplementary material, data S8), and this was then selected
for use in all subsequent simulations. The Reynolds-averaged
Navier–Stokes equations were solved using the two-equation
shear-stress transport turbulence model [62], with a stationary
solver used to obtain a steady-state solution.We simulated inlet vel-
ocities of 0.4, 0.7 and 0.9 ms–1 for each pair of models. These values
were selected based on the swimming speeds calculated by Usami
[63] for Anomalocaris individuals with lobe widths of 60–70 mm, as
was the case for large A. canadensis specimens with comparably
sized appendages to those modelled herein [9].

CFD results were visualized as plots of flow velocity magnitude
andpressuredistributionsacross theappendagemodels. Inaddition,
we computed the drag forces (FD) and lift forces (FL) exerted by the
fluid on the appendages and then calculated the drag coefficients
(CD) and lift coefficients (CL) using the following formulae:

CD ¼ 2FD
rU2A

and

CL ¼ 2FL
rU2A

where r is the fluid density (kg m–3), U is the inlet velocity (ms–1)
and A is the surface area (m2). CFD results files are available from
https://osf.io/pqc4r/.

This study was restricted to analysing the hydrodynamics of
the frontal appendages, for which adequate fossil data and
modern morphofunctional analogues are available to constrain
reconstructions [6,9,37]. Attempting to produce an accurate 3D
model of the entire body would introduce many assumptions,
as very little is known about the three-dimensionality of the
Anomalocaris canadensis trunk and associated body flaps, despite
the availability of several complete body specimens [9].
3. Results
Rotation in Anomalocaris canadensis appendage kinematic
models (figure 2a–e; electronic supplementary material,
figure S8) reflects a similar degree of motion to that observed
in modern raptorial arachnid analogues (figure 2f–m). The
A. canadensis models show that by constraining podomere
rotation at the dorsal condyles, the most distal podomeres
initiate rotation (figure 2e; electronic supplementary material,
figure S8). Models either prohibiting or allowing telescoping
between adjacent podomeres demonstrate that appendage clo-
sure resulting in no space between endite tips was not possible
(figure 2b,e; electronic supplementary material, figure S8).

FEA using serially arranged muscles (figure 3a) show
that both flexed and outstretched (unflexed) Anomalocaris
canadensis models experienced higher VM microstrain at
constrained endites (figure 3b,c; electronic supplementary
material, data S6). These regions of higher VM microstrain
extend along the constrained endites up to the auxiliary
spines and along the proximal sides of podomeres 2–11 (i.e.
regions proximal to points of rotation). Podomeres 1 and
12–14 have lower VM microstrain, reflecting the limited
rotation modelled for these podomeres. The presence of
similar VM microstrain distributions in both flexed and out-
stretched models suggests that during attacks, these regions
of each podomere would have experienced overall higher
degrees of plastic deformation and higher microstrain,
especially at the points of impact with prey.

CFD simulations showed that the results were almost iden-
tical for both models in each pair (electronic supplementary
material, data S9), and so we only describe the results for the
left appendage model below. In all the models—consistent
with theoretical expectations—a sharp velocity gradient
was developed in the immediate vicinity of the appendage
(the boundary layer), with a region of low-velocity flow
(the wake) downstream of the model (figure 4a–c; electronic
supplementary material, figure S9). There was a close corre-
spondence between areas of higher pressure across the
appendage and lower fluid velocity, especially clear at the lead-
ing edge (figure 4a–f; electronic supplementary material,
figures S9 and S10). Also consistent with theoretical expec-
tations, the drag forces generated by the appendage models
increased with increasing velocity, whereas the drag coeffi-
cients slightly decreased as velocity increased (figure 4g,h;
electronic supplementary material, data S9). The lift forces
and coefficients were negative in all cases (electronic sup-
plementary material, figure S11 and data S9). However, some
notable differences between the three appendage models
were also apparent. In particular, the drag produced by the
outstretched model was considerably lower than for the
flexed and intermediate models at all simulated inlet velocities
(figure 4g,h; electronic supplementarymaterial, data S9). These
differences were most pronounced at high inlet velocities, indi-
cating that the drag reduction resulting from an outstretched
position was more substantial at higher swimming speeds.
4. Discussion
Kinematic models comparing Anomalocaris canadensis to the
modern arachnid analogues demonstrate effective raptorial
appendage motion in the former, which is consistent with pre-
vious modelling [18]. These models also demonstrate that
A. canadensiswas unable to completely enclose the appendage
when fully flexed. While this would have imposed limitations
on prey size, which would have varied throughout the
ontogeny of A. canadensis [18], it would have also prevented
endites from impacting on each other and potentially causing
damage. Despite this limitation, the high degree of dexterity
in the frontal appendages suggests that A. canadensis could
have efficiently grasped prey items of varying sizes and mor-
phologies. However, the higher VM microstrain distribution
along the thin, elongate endites predicts that the appendages
were not reinforced sufficiently for exerting high levels of
force onto prey. As such, the endites would have been
damaged if used to attack biomineralized taxa (e.g. trilobites).
Indeed, if biomineralized prey were regularly targeted, it is
expected that stunted or injured endites would be commonly
observed among A. canadensis appendage specimens. To
date, only one specimen that shows such a putative injury
has been documented (see Daley & Edgecombe [9], fig. 12.3).
Biomechanical and fossil evidence therefore indicates that
A. canadensis was very unlikely to have preyed upon calcified
trilobites or other biomineralized taxa. This has two major
implications for A. canadensis predation. Firstly, A. canadensis
would have been limited to soft (non-biomineralized) prey,
which may have been pierced by the endites during attacks
[64]. Secondly, the evidence for durophagy (e.g. skeletal
damage and shelly coprolites) in Cambrian deposits [5]
should not be attributed toAnomalocaris or closely allied radio-
donts. This is further supported by the morphology of the
A. canadensis oral cone, which has pliable, weakly sclerotized
plates that could not fully occlude [9,26]. Rather than
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radiodonts, recent studies instead identify gnathobase-bearing
artiopodan euarthropods as predominant durophages in
Cambrian ecosystems [39,40].

Construction of the FEMs presented here required key
assumptions that must be addressed. These include cuticle
properties, muscle reconstructions and muscle force. Impor-
tantly, these assumptions are presented within the framework
ofmodern arthropodanalogues. The proposedmaterial proper-
ties (Young’s modulus and Poisson’s ratio) replicate values
used in previous FEAs of Cambrian arthropods from the Bur-
gess Shale [39,40], the latter informed by exoskeletal cuticle of
horseshoe crabs [55]. Preservation of Anomalocaris canadensis
and other radiodont frontal appendages is consistent with
cuticular sclerotization comparable to co-occurring non-biomi-
neralized euarthropods. Muscles are based on sea spider oviger
appendage musculature, as there are few modern arthropod
appendages that possess homonomous podomeres [54]. Finally,
the force value of 1 N per muscle beam was used, resulting in
each muscle exerting a 3 N input force, comparable to muscle
forces exerted by other arthropods [39,65]. These last two
assumptions were needed as muscles must be constructed to
run the FEA and muscles are not preserved in frontal appen-
dage fossils. These assumptions mean that absolute numerical
values of strain cannot be interpreted in any meaningful
way. We have instead focused on where the strain is concen-
trated in the FEMs, allowing us to determine where intense
mechanical strain was experienced in the appendage. Such
applications of FEA on extinct morphologies inherently lack
exact modern comparisons, but are useful for understanding
stress and strain distributions in modern and extinct animals
[66,67]. Importantly, the higher strain along the endites is com-
parable to FEMs of other fossil arthropods with elongated
spines on their feeding appendages [39], highlighting that
these morphologies are sub-optimal for grabbing and crushing
reinforced prey.

CFD results reveal that the frontal appendages of Anoma-
locaris canadensis had an optimized orientation for rapid
swimming in open waters, suggesting that it was an agile
predator, consistent with hydrodynamic studies of the body
flaps and tail fan [63,68]. The outstretched posture produced
reduced drag and thus would have lowered the energetic cost
of locomotion [69], potentially enabling the animal to swim
more efficiently at higher speeds. Although our analyses do
not account for the contribution of the body to the drag
produced by the entire animal, previous studies have demon-
strated that appendages can represent important components
of the total drag coefficients of aquatic animals [70] and hence
they would be expected to have had a notable impact
on the cost of locomotion for A. canadensis. We infer that
A. canadensis preferentially positioned its appendages in an
outstretched position to maximize swimming speed, for
example, during acceleration bursts to capture prey, similar
to modern predatory water bugs [71].

Our computational analyses, coupled with observations
of the anatomy of Anomalocaris canadensis, especially regard-
ing the functional morphology of the frontal appendages,
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body flaps and tail fan [9,18,26,63,68], predict this taxon was
an active nektonic apex predator that fed on soft prey living
within the water column above the benthos. This is further
supported by evidence for acute vision in a closely related
species from the Emu Bay Shale of South Australia [61,72].
It is likely that the eyes of A. canadensis were also adapted
to targeting prey in well-lit waters, which may have excluded
it from hunting in darker environments, particularly on the
benthos in deep-water settings, but it may have also ventured
into shallower waters with illuminated seafloors [73–75]. This,
coupled with the possibility that A. canadensis would have
damaged the ventral endites and dorsal spines of the frontal
appendages on the substrate if trying to rapidly grab prey
from the seafloor (as indicated by our FEA results), contradicts
the idea that it was primarily a demersal predator [30,76], par-
ticularly of benthic trilobites [22,27–29,31,32]. Instead, A.
canadensis had a large diversity of nektonic and pelagic soft-
bodied animals to potentially feed upon, including a variety
of other euarthropods (especially the common isoxyids and
hymenocarines such as Waptia and Canadaspis), as well as cte-
nophores, nectocaridids and vetulicolians [73,75,77,78],
leaving other Burgess Shale radiodonts (e.g.Hurdia [8,79],Cam-
broraster [11], Stanleycaris [21] andTitanokorys [12]), artiopodans
(e.g. Sidneyia [80]), and various other predators to exploit the
benthos [75].
5. Conclusion
Kinematic and biomechanical analyses of Anomalocaris
canadensis frontal appendages demonstrate that, despite
being a raptorial predator, this iconic species was incapable
of crushing biomineralized prey with these feeding structures.
This evidence, coupled with our analyses of the hydrodyn-
amics of the frontal appendages, suggest that this Cambrian
apex predator targeted mobile soft-bodied prey within a
well-lit water column. While this excludes A. canadensis
as a key suspect for attacking benthic trilobites and other
hard-shelled prey, radiodonts such as Amplectobelua [24],
Ramskoeldia [25] and possibly Peytoia [6,21] may have been
better equipped for durophagy. These findings add to a
growing body of evidence for niche partitioning among radio-
donts [10,12,17,18,20,21,61,81], reaffirming the complexity of
Cambrian food webs [4,82], and highlighting the diverse
weaponry that had rapidly evolved among early euarthropod
predators, which likely drove further anatomical innovation in
prey armature [5].
Data accessibility. Virtual 3D PDFs, .STL files, loaded FEA models and
CFD simulation files can be downloaded from OSF: https://osf.io/
pqc4r/.
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Figure S1: 3D PDF Anomalocaris canadensis model outstretched. 

Figure S2: 3D PDF of the Anomalocaris canadensis model flexed. 

Figure S3: 3D PDF of the Mastigoproctus giganteus model outstretched.  

Figure S4: 3D PDF of the Mastigoproctus giganteus model flexed. 

Figure S5: 3D PDF of the Heterophrynus elaphus model outstretched. 

Figure S6: 3D PDF of the Heterophrynus elaphus model flexed. 

Figure S7: 3D PDF of the conservative Anomalocaris canadensis model flexed. 

Figure S8: Conservative 3-D kinematic model of Anomalocaris canadensis raptorial 

appendage. (a) Model completely outstretched, colour coded for podomere number. Lateral 

view. Figure S1. (b–f) Appendage maximally flexed. Figure S7. (b) Lateral view. (c, d) 

Oblique orientations. (e) Sagittal view. (f) Anterior view. (g) Illustration of sequential 

appendage motion from outstretched to flexed. Scale bars: 5 mm. 

Figure S9: Additional two-dimensional surface plots of velocity magnitude. Ambient 

direction of flow was from right to left. (a–f) Models using inlet velocity of 0.4 ms–1. (a, b) 

outstretched, (c, d) intermediate, and (e, f) flexed models. (g–l) Models using inlet velocity of 

0.7 ms–1. (g, h) outstretched, (i, j) intermediate, and (k, l) flexed models. (m–r) Models using 

inlet velocity of 0.9 ms–1. (m, n) outstretched, (o, p) intermediate, and (q, r) flexed models. (a, 

c, e, g, i, k, m, o, q) Lateral view of left appendage. (b, d, f, h, j, l, n, p, r) Dorsal view of 

paired appendages. Scale bars all 15 mm. 

Figure S10: Additional surface pressure plots. Ambient direction of flow was from right to 

left. (a–f) Models using inlet velocity of 0.4 ms–1. (a, b) outstretched, (c, d) intermediate, and 

(e, f) flexed models. (g–l) Models using inlet velocity of 0.7 ms–1. (g, h) outstretched, (i, j) 

intermediate, and (k, l) flexed models. (m–r) Models using inlet velocity of 0.9 ms–1. (m, n) 

outstretched, (o, p) intermediate, and (q, r) flexed models. (a, c, e, g, i, k, m, o, q) Lateral 
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view of left appendage. (b, d, f, h, j, l, n, p, r) Dorsal view of paired appendages. Scale bars 

all 20 mm. 

Figure S11: (a) Lift forces for the outstretched, intermediate, and flexed models (left 

appendages only) at inlet velocities of 0.4, 0.7, and 0.9 ms–1. (b) Lift coefficients for the 

outstretched, intermediate, and flexed models (left appendages only) at inlet velocities of 0.4, 

0.7, and 0.9 ms–1. 
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Species Specime
n 
number 

Scanne
r 

Para
meter
s 

Captu
re 

Isotro
pic 
voxel 
side 
length 

Scan 
slices  

Software 
for 
capture 

Reconstru
ction 
figure 

Heterop
hrynus 
elaphus 

ZSMA 
20120286 

Phoenix 
Nanotom 
micro-
CT, 
Bavarian 
State 
Collectio
n of 
Zoology 

90 kV, 
110µA 

3072 x 
2400 
pixel 
‘virtual
’ 
(movin
g) 
detector 
array 

15 μm 2359 Phoenix 
Datos/x 
(GE 
Measurem
ent & 
Control) 
and VG 
Studio 
Max v. 2.2 
(Volume 
Graphics). 

Figure S6, 7; 
Data S7 

Mastigop
roctus 
giganteu
s 

NENH-
AR00011 

GE-
Phoenix 
V|tome|x
s micro-
CT, 
Universit
y of New 
England 

130 
kV, 
100 µA  

2000 x 
1000 
pixel 
‘virtual
’ 
(movin
g) 
detector 
array 

38 µm 1000 Datos 
acquisition 
software v. 
2.2.1 
(phoenix, 
Wunstor, 
Germany) 
and 
reconstruct
ion 
software v. 
2.2.1 
RTM. 

Figure S4, 
S5; Data S6 

 

Data S1: Micro-CT scanning conditions for the examined modern arachnids. 
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Structure Description Specimen 
Podomere 1-
14, endite, 
splay 

Endites on these podomeres are slightly angled 
relative to the long axis of the podomere 

ROMIP 62542 
ROMIP 66904 
ROMIP 66905 

Podomere 1, 
endite 
morphology 

A single spine, not trident, lengths compared to 
podomere 2 length 

ROMIP 51212  
ROMIP 51215 
ROMIP 61650  
ROMIP 61672  
ROMIP 61675  
ROMIP 62541 
ROMIP 62551 
ROMIP 66906 
ROMIP 66908  

Podomere 1 , 
podomere 
length/Endite 
length/ratio 

19.3/8.2/2.35 ROMIP 62543 

Podomere 2, 
podomere 
length/Endite 
length/ratio 

11.5/12.6/0.913 ROMIP 61645 

Podomere 3, 
podomere 
length/Endite 
length/ratio 

7.95/4.92/1.62 
15.19/11.09/1.3 

ROMIP 61673 
ROMIP 62543 

Podomere 4, 
podomere 
length/Endite 
length/ratio 

8/9/1.33 ROMIP 61673 

Podomere 5, 
podomere 
length/Endite 
length/ratio 

8.71/6.63/1.3 ROMIP 61675 

Podomere 6, 
podomere 
length/Endite 
length/ratio 

8.65/7.37/1.16 ROMIP 61675 

Podomere 7, 
podomere 
length/Endite 
length/ratio 

11.7/9.76/1.20 ROMIP 62543 

Podomere 8, 
podomere 
length/Endite 
length/ratio 

9.56/9.99/0.96 ROMIP 62543 

Podomere 9, 
podomere 

8.93/6.21/1.44 ROMIP 62543 
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length/Endite 
length/ratio 
Podomere 10, 
podomere 
length/Endite 
length/ratio 

7.89/7.70/1.02 ROMIP 62543 

Podomere 11, 
podomere 
length/Endite 
length/ratio 

4.11/2.53/1.62 ROMIP 62543 

Podomere 1-8, 
dorsum, 
morphology  

Rectangular, distal section of one podomere must 
slot into proximal section of next podomere 

ROMIP 61650 

Distal 
appendage 
membrane 

Podomeres 12-14 lacking arthrodial membrane. ROMIP 66907 

Podomere 
articulation 
and rotation 

Condyles along dorsal-most section of podomeres ROMIP 61675 

Arthrodial 
membrane, 
morphology 
(not modelled) 

Triangular-shaped joint, lateral and longitudinal 
ridges, allowing for extension and compression 

ROMIP 61040 
ROMIP 62543 

Podomere 9-
14, dorsum, 
morphology 

Dorsal spine developed on distal section, increasing 
in length, but becoming slenderer in more distal 
podomeres 

ROMIP 62543 

Appendage 
width 

~20% the length of the podomeres ROMIP 61642 

Ventral view Similar length as dorsal view ROMIP 51212 
ROMIP 61650 

Podomere 1 
endite 

Non-trident morphology, stout, distal side curved 
proximally 

ROMIP 61675 

Podomere 2 
endite 

Trident, longest main endite in array of podomeres, 
auxiliary spines reduced, origins of auxiliary endites 
half way along main endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 

Podomere 3 
endite 

Trident, shorter than podomeres 2 and 4, auxiliary 
spines reduced, but more prominent that podomere 
2, origins of auxiliary endites half way along main 
endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 

Podomere 4 
endite 

Trident, longer than podomeres 3 and 5, shorter than 
podomere 2, auxiliary spines reduced, but more 
prominent than podomere 2; similar to podomere 3, 
origins of auxiliary endites half way along main 
endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 

Podomere 5 
endite  

Trident, shorter than podomeres 4 and 6, auxiliary 
spines reduced, but more prominent than podomere 
2; similar to podomere 3, origins of auxiliary endites 
half way along main endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 
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Podomere 6 
endite 

Second largest endite in appendage (larger than 
podomere 4), trident, longer than all podomeres 
except podomere 2, auxiliary spines longer than 
podomeres 2–5, origins of auxiliary endites half way 
along main endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 

Podomere 7 
endite 

Trident, shorter than podomeres 6 and 8, auxiliary 
spines not reduced, extending into last third of main 
endite length, origins of auxiliary endites half way 
along main endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 

Podomere 8 
endite 

Trident, longer than podomeres 7 and 9, auxiliary 
spines not reduced, extending into last third of main 
endite length, origins of auxiliary endites half way 
along main endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 

Podomere 9 
endite 

Trident, shorter than podomeres 8 and 10, auxiliary 
spines not reduced, origins of auxiliary endites half 
way along main endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 

Podomere 10 
endite 

Trident, longer than podomere 9, auxiliary spines 
not reduced, extending into last third of main endite 
length, origins of auxiliary endites half way along 
main endite 

ROMIP 61675 
ROMIP 62542 
ROMIP 62543 

Podomere 11 
endite 

Non-trident, stout, proximal spine section curved 
anteriorly 

ROMIP 62542 
ROMIP 62543 

Podomere 12 
endite 

Non-trident, stout, proximal spine section curved 
anteriorly 

ROMIP 62542 
ROMIP 62543 

Podomere 13 
endite 

Non-trident, stout, directed distally ROMIP 62542 
ROMIP 62543 

Podomere 14 
endite 

Claw morphology ROMIP 62543 
ROMIP 66907 

 

Data S2: Measurements and observations of Anomalocaris canadensis specimens used to 

inform the 3-D reconstruction. 
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Data S3: STL and Maya files associated with Mastigoproctus giganteus (NENH-AR0011) 

models.  

Data S4: STL and Maya files associated with the Heterophrynus elaphus (ZSMA 20120286) 

models. 

Data S5: STL and Maya files associated with the Anomalocaris canadensis models. 

Data S6: FEA files associated with the Anomalocaris canadensis models. 

Data S7: STL and CFD files associated with the Anomalocaris canadensis appendage 

models used in CFD simulations.  
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Model 
Number of mesh 
elements Duration Drag force (N) 

Difference from 
finest mesh 

Outstretched 1,616,317 1 h 13 m 54 s 0.0231143 −8.96% 
 3,392,493 2 h 44 m 57 s 0.0241678 −4.81% 
 7,240,496 6 h 14 m 18 s 0.0250519 −1.33% 
 11,051,106 9 h 52 m 18 s 0.0255394 0.59% 
 23,652,908 23 h 22 m 54 s 0.0253903  

Data S8: Sensitivity analysis of mesh size. Inlet velocity of 0.70 ms−1. Results presented for 

left appendage in the pair. 
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Model 
Velocity 
(ms−1) 

Reynolds 
number 

Drag force 
(N) 

Drag 
coefficient 

Lift force 
(N) 

Lift 
coefficient 

Outstretched 
(left appendage) 

0.40 53200 0.0086327 0.0214701 −0.0058907 −0.0146507 

Outstretched 
(right 
appendage) 

0.40 53200 0.0086538 0.0215227 −0.0059614 −0.0148264 

Outstretched 
(left appendage) 

0.70 93100 0.0255639 0.0207605 −0.0184430 −0.0149776 

Outstretched 
(right 
appendage) 

0.70 93100 0.0255359 0.0207378 −0.0187029 −0.0151887 

Outstretched 
(left appendage) 

0.90 119700 0.0421173 0.0206911 −0.0307844 −0.0151235 

Outstretched 
(right 
appendage) 

0.90 119700 0.0418441 0.0205568 −0.0312299 −0.0153424 

Intermediate 
(left appendage) 

0.40 31480 0.0115297 0.0304761 −0.0079353 -0.0209750 

Intermediate 
(right 
appendage) 

0.40 31480 0.0114852 0.0303584 −0.0080891 −0.0213815 

Intermediate 
(left appendage 

0.70 55090 0.0334446 0.0288663 −0.0234272 −0.0202202 

Intermediate 
(right 
appendage) 

0.70 55090 0.0333338 0.0287706 −0.0238793 −0.0206104 

Intermediate 
(left appendage) 

0.90 70830 0.0544646 0.0284374 −0.0385021 −0.0201030 

Intermediate 
(right 
appendage) 

0.90 70830 0.0542676 0.0283345 −0.0391913 −0.0204628 

Flexed (left 
appendage) 

0.40 21564 0.0120974 0.0342352 −0.0074690 −0.0211372 

Flexed (right 
appendage) 

0.40 21564 0.0120968 0.0342336 −0.0074345 −0.0210394 

Flexed (left 
appendage) 

0.70 37737 0.0358769 0.0331529 −0.0227088 −0.0209846 

Flexed (right 
appendage) 

0.70 37737 0.0360903 0.0333501 −0.0226780 −0.0209562 

Flexed (left 
appendage) 

0.90 48519 0.0587434 0.0328380 −0.0374660 −0.0209438 

Flexed (right 
appendage) 

0.90 48519 0.0589880 0.0329747 −0.0373620 −0.0208856 

Data S9: Additional CFD results 
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