30 research outputs found

    Malformed individuals of the trilobite Estaingia bilobata from the Cambrian Emu Bay Shale and their palaeobiological implications

    Get PDF
    First published online: 8 February 2023Malformed trilobite specimens present important insight into understanding how this extinct arthropod group recovered from developmental or moulting malfunctions, pathologies, and injuries. Previously documented examples of malformed trilobite specimens are often considered in isolation, with few studies reporting on multiple malformations in the same species. Here we report malformed specimens of the ellipsocephaloid trilobite Estaingia bilobata from the Emu Bay Shale Konservat-Lagerstätte (Cambrian Series 2, Stage 4) on Kangaroo Island, South Australia. Ten malformed specimens exhibiting injuries, pathologies, and a range of teratologies are documented. Furthermore, five examples of mangled exoskeletons are presented, indicative of predation on E. bilobata. Considering the position of malformed and normal specimens of E. bilobata in bivariate space, we demonstrate that the majority of malformed specimens cluster among the larger individuals. Such specimens may exemplify larger forms successfully escaping predation attempts, but could equally represent individuals exhibiting old injuries that were made during earlier (smaller) growth stages that have healed through subsequent moulting events. The available evidence from the Emu Bay Shale suggests that this small, extremely abundant trilobite likely played an important role in the structure of the local ecosystem, occupying a low trophic level and being preyed upon by multiple durophagous arthropods. Furthermore, the scarcity of malformed E. bilobata specimens demonstrates how rarely injuries, developmental malfunctions, and pathological infestations occurred within the species.Russell DC Bicknell, James D Holmes, Diego C García-Bellido, and John R Paterso

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Five new malformed trilobites from Cambrian and Ordovician deposits from the Natural History Museum

    No full text
    Injured trilobites present insight into how a completely extinct group of arthropods responded to traumatic experiences, such as failed predation and moulting complications. These specimens are therefore important for more thoroughly understanding the Paleozoic predator-prey systems that involved trilobites. To expand the record of injured trilobites, we present new examples of injured Ogygopsis klotzi and Olenoides serratus from the Campsite Cliff Shale Member of the Burgess Shale Formation (Cambrian, Miaolingian, Wuliuan), Paradoxides (Paradoxides) paradoxissimus gracilis from the Jince Formation (Cambrian, Miaolingian, Drumian), Ogygiocarella angustissima from the Llanfawr Mudstones Formation (Middle–Late Ordovician, Darriwilian–Sandbian), and Ogygiocarella debuchii from the Meadowtown Formation, (Middle–Late Ordovician, Darriwilian–Sandbian). We consider the possible origins of these malformations and conclude that most injuries reflect failed predation. Within this framework, possible predators are presented, and we uncover a marked shift in the diversity of animals that targeted trilobites in the Ordovician. We also collate other records of injured Ogygo. klotzi and Ol. serratus, and Ogygi. debuchii, highlighting that these species are targets for further understanding patterns and records of trilobite injuries

    The gnathobasic spine microstructure of recent and Silurian chelicerates and the Cambrian artiopodan Sidneyia: Functional and evolutionary implications

    No full text
    Gnathobasic spines are located on the protopodal segments of the appendages of various euarthropod taxa, notably chelicerates. Although they are used to crush shells and masticate soft food items, the microstructure of these spines are relatively poorly known in both extant and extinct forms. Here we compare the gnathobasic spine microstructures of the Silurian eurypterid Eurypterus tetragonophthalmus from Estonia and the Cambrian artiopodan Sidneyia inexpectans from Canada with those of the Recent xiphosuran chelicerate Limulus polyphemus to infer potential variations in functional morphology through time. The thickened fibrous exocuticle in L. polyphemus spine tips enables effective prey mastication and shell crushing, while also reducing pressure on nerve endings that fill the spine cavities. The spine cuticle of E. tetragonophthalmus has a laminate structure and lacks the fibrous layers seen in L. polyphemus spines, suggesting that E. tetragonophthalmus may not have been capable of crushing thick shells, but a durophagous habit cannot be precluded. Conversely, the cuticle of S. inexpectans spines has asimilar fibrous microstructure to L. polyphemus, suggesting that S. inexpectans was a competent shell crusher. This conclusion is consistent with specimens showing preserved gut contents containing various shelly fragments. The shape and arrangement of the gnathobasic spines is similar for both L. polyphemusand S. inexpectans, with stouter spines in the posterior cephalothoracic or trunk appendages, respectively.This differentiation indicates that crushing occurs posteriorly, while the gnathobases on anterior appendages continue mastication and push food towards and into the mouth. The results of recent phylogenetic analyses that considered both modern and fossil euarthropod clades show that xiphosurans and eurypterids are united as crown-group euchelicerates, with S. inexpectans placed within more basalartiopodan clades. These relationships suggest that gnathobases with thickened fibrous exocuticle, if not homoplasious, may be plesiomorphic for chelicerates and deeper relatives within Arachnomorpha. This study shows that the gnathobasic spine microstructure best adapted for durophagy has remained remarkably constant since the Cambrian

    Cambrian carnage: Trilobite predator-prey interactions in the Emu Bay Shale of South Australia

    No full text
    The Cambrian explosion represents the rapid emergence of complex marine ecosystems on Earth. The propagation of predator-prey interactions within these systems was almost certainly one of the major drivers of this evolutionary event, sparking an arms race that promoted the proliferation of biomineralised exoskeletons and shells, and the evolution of the first durophagous (shell-crushing) predators. The most commonly documented evidence of Cambrian durophagous predation comes from injured trilobites. However, quantitative analysis based on multiple specimens from single localities is lacking. Such studies are required to reveal the dynamics of ancient predator-prey systems at fine ecological scales (e.g. at the population or community level). This study documents injured specimens of two trilobite species, Redlichia takooensis and Redlichia rex, from the Emu Bay Shale Konservat-Lagerst¨atte (Cambrian Series 2, Stage 4) on Kangaroo Island, South Australia. A total of 38 injured specimens exhibiting various healed cephalic and thoracic injuries are documented, in addition to the mangled remains of two individuals that probably resulted from the activities of a durophagous predator or scavenger. Specimens of both species show that most injuries are located on the posterior portion of the thorax, indicating that predators preferentially attacked from behind and/or prey individuals presented the posterior of the trunk towards the predator when threatened or fleeing. The larger sample of injured R. takooensis shows that while unilateral injuries are more common than bilateral ones, there is no evidence for a left- or right-side bias, contrasting with previous suggestions that Cambrian trilobites exhibit right-sided injury stereotypy. Comparing the position of injured and non-injured R. takooensis and R. rex in bivariate space, we illustrate that injured specimens of both species typically represent some of the largest individuals of these taxa. This suggests that smaller individuals were completely consumed during an attack and/or larger individuals were more likely to survive an attack and thus record a healed injury. We argue that R. rex, rather than radiodonts, was likely the chief producer of exoskeletal injuries and large shelly coprolites in the Emu Bay Shale biota, and represents one of the earliest cannibalistic trilobites.Russell D.C. Bicknell, James D. Holmes, Stephen Pates, Diego C. García-Bellido, John R. Paterso
    corecore