16 research outputs found
Closed-loop control of meltpool temperature in directed energy deposition
The objective of this work is to mitigate flaw formation in powder and laser-based directed energy deposition (DED) additive manufacturing process through close-loop control of the meltpool temperature. In this work, the meltpool temperature was controlled by modulating the laser power based on feedback signals from a coaxial two-wavelength imaging pyrometer. The utility of closed-loop control in DED is demonstrated in the context of practically inspired trapezoid-shaped stainlesssteel parts (SS 316L). We demonstrate that parts built under closed-loop control have reduced variation in porosity and uniform microstructure compared to parts built under open-loop conditions. For example, post-process characterization showed that closed-loop processed parts had a volume percent porosity ranging from 0.036% to 0.043%. In comparison, open-loop processed parts had a larger variation in volume percent porosity ranging from 0.032% to 0.068%. Further, parts built with closed-loop processing depicted consistent dendritic microstructure. By contrast, parts built with open-loop processing showed microstructure heterogeneity with the presence of both dendritic and planar grains, which in turn translated to large variation in microhardness
Reliability of a novel thermal imaging system for temperature assessment of healthy feet
Abstract Background Thermal imaging is a useful modality for identifying preulcerative lesions (“hot spots”) in diabetic foot patients. Despite its recognised potential, at present, there is no readily available instrument for routine podiatric assessment of patients at risk. To address this need, a novel thermal imaging system was recently developed. This paper reports the reliability of this device for temperature assessment of healthy feet. Methods Plantar skin foot temperatures were measured with the novel thermal imaging device (Diabetic Foot Ulcer Prevention System (DFUPS), constructed by Photometrix Imaging Ltd) and also with a hand-held infrared spot thermometer (Thermofocus® 01500A3, Tecnimed, Italy) after 20 min of barefoot resting with legs supported and extended in 105 subjects (52 males and 53 females; age range 18 to 69 years) as part of a multicentre clinical trial. The temperature differences between the right and left foot at five regions of interest (ROIs), including 1st and 4th toes, 1st, 3rd and 5th metatarsal heads were calculated. The intra-instrument agreement (three repeated measures) and the inter-instrument agreement (hand-held thermometer and thermal imaging device) were quantified using intra-class correlation coefficients (ICCs) and the 95% confidence intervals (CI). Results Both devices showed almost perfect agreement in replication by instrument. The intra-instrument ICCs for the thermal imaging device at all five ROIs ranged from 0.95 to 0.97 and the intra-instrument ICCs for the hand-held-thermometer ranged from 0.94 to 0.97. There was substantial to perfect inter-instrument agreement between the hand-held thermometer and the thermal imaging device and the ICCs at all five ROIs ranged between 0.94 and 0.97. Conclusions This study reports the performance of a novel thermal imaging device in the assessment of foot temperatures in healthy volunteers in comparison with a hand-held infrared thermometer. The newly developed thermal imaging device showed very good agreement in repeated temperature assessments at defined ROIs as well as substantial to perfect agreement in temperature assessment with the hand-held infrared thermometer. In addition to the reported non-inferior performance in temperature assessment, the thermal imaging device holds the potential to provide an instantaneous thermal image of all sites of the feet (plantar, dorsal, lateral and medial views). Trial registration Diabetic Foot Ulcer Prevention System NCT02317835, registered December 10, 201
Part-scale thermal simulation of laser powder bed fusion using graph theory: Effect of thermal history on porosity, microstructure evolution, and recoater crash
Flaw formation in laser powder bed fusion (LPBF) is influenced by the spatiotemporal temperature distribution – thermal history – of the part during the process. Therefore, to prevent flaw formation there is a need for fast and accurate models that can predict the thermal history as a function of the part shape and processing parameters. In previous work, a thermal modeling approach based on graph theory was used to predict the thermal history in LPBF parts in less-than 20% of the time required by finite element-based models with error within 10% of experimental measurements. The present work transitions toward the use of the graph theory approach for predicting flaw formation. The objectives of this paper are to: (1) apply the graph theory approach for predicting the thermal history of several LPBF parts that have different geometries but were all built together on a single build plate; (2) compare the graph theory thermal model with experimental temperature measurements made using an in-situ infrared camera; and (3) relate the thermal history predictions obtained from the graph theory approach to flaw formation in LPBF parts. In pursuit of these objectives, fifteen different Inconel 718 parts encompassing five different shapes were built simultaneously on an open architecture LPBF platform (build time 9.5 h). Second, the LPBF machine was instrumented with an in-situ infrared camera to capture the layer-wise surface temperature of each part as it was being deposited. Third, the thermal history for each part was predicted with the graph theory approach, and the model predictions were assessed against experimental temperature measurements. Fourth, the porosity in certain test parts was quantified with X-ray computed tomography, and their microstructure was characterized with optical and scanning electron microscopy. The results show that the shape of the part has a significant effect on the thermal history, and thereby influences the occurrence of build failures (recoater crash), type and severity of porosity, and morphology of the microstructure. The graph theory approach correctly predicted the thermal history trends that lead to flaw formation in LPBF within a fraction of the build time – the root mean squared prediction error was less-than 20°C, and computation time was approximately 5 min. The graph theory method has the potential to serve LPBF practitioners as a rapid physics-based approach to guide part design and identify suitable processing parameters in place of expensive and time-consuming empirical trial-and-error optimization