52 research outputs found

    Voice processing in dementia: a neuropsychological and neuroanatomical analysis

    Get PDF
    Voice processing in neurodegenerative disease is poorly understood. Here we undertook a systematic investigation of voice processing in a cohort of patients with clinical diagnoses representing two canonical dementia syndromes: temporal variant frontotemporal lobar degeneration (n = 14) and Alzheimer’s disease (n = 22). Patient performance was compared with a healthy matched control group (n = 35). All subjects had a comprehensive neuropsychological assessment including measures of voice perception (vocal size, gender, speaker discrimination) and voice recognition (familiarity, identification, naming and cross-modal matching) and equivalent measures of face and name processing. Neuroanatomical associations of voice processing performance were assessed using voxel-based morphometry. Both disease groups showed deficits on all aspects of voice recognition and impairment was more severe in the temporal variant frontotemporal lobar degeneration group than the Alzheimer’s disease group. Face and name recognition were also impaired in both disease groups and name recognition was significantly more impaired than other modalities in the temporal variant frontotemporal lobar degeneration group. The Alzheimer’s disease group showed additional deficits of vocal gender perception and voice discrimination. The neuroanatomical analysis across both disease groups revealed common grey matter associations of familiarity, identification and cross-modal recognition in all modalities in the right temporal pole and anterior fusiform gyrus; while in the Alzheimer’s disease group, voice discrimination was associated with grey matter in the right inferior parietal lobe. The findings suggest that impairments of voice recognition are significant in both these canonical dementia syndromes but particularly severe in temporal variant frontotemporal lobar degeneration, whereas impairments of voice perception may show relative specificity for Alzheimer’s disease. The right anterior temporal lobe is likely to have a critical role in the recognition of voices and other modalities of person knowledge

    Agricultural landscape simplification reduces natural pest control: A quantitative synthesis

    Full text link
    Numerous studies show that landscape simplification reduces abundance and diversity of natural enemies in agroecosystems, but its effect on natural pest control remains poorly quantified. Further, natural enemy impacts on pest populations have usually been estimated for a limited number of taxa and have not considered interactions among predator species. In a quantitative synthesis with data collected from several cropping systems in Europe and North America, we analyzed how the level and within-field spatial stability of natural pest control services was related to the simplification of the surrounding landscape. All studies used aphids as a model species and exclusion cages to measure aphid pest control. Landscape simplification was quantified by the proportion of cultivated land within a 1 km radius around each plot. We found a consistent negative effect of landscape simplification on the level of natural pest control, despite interactions among enemies. Average level of pest control was 46% lower in homogeneous landscapes dominated by cultivated land, as compared with more complex landscapes. Landscape simplification did not affect the amount of positive or negative interactions among ground-dwelling and vegetation-dwelling predators, or the within-field stability of pest control. Our synthesis demonstrates that agricultural intensification through landscape simplification has negative effects on the level of natural pest control with important implications for management to maintain and enhance ecosystem services in agricultural landscapes. Specifically, preserving and restoring semi-natural habitats emerges as a fundamental first step to maintain and enhance pest control services provided by predatory arthropods to agriculture

    Single gene locus changes perturb complex microbial communities as much as apex predator loss

    Get PDF
    Many bacterial species are highly social, adaptively shaping their local environment through the production of secreted molecules. This can, in turn, alter interaction strengths among species and modify community composition. However, the relative importance of such behaviours in determining the structure of complex communities is unknown. Here we show that single-locus changes affecting biofilm formation phenotypes in Bacillus subtilis modify community structure to the same extent as loss of an apex predator and even to a greater extent than loss of B. subtilis itself. These results, from experimentally manipulated multitrophic microcosm assemblages, demonstrate that bacterial social traits are key modulators of the structure of their communities. Moreover, they show that intraspecific genetic variability can be as important as strong trophic interactions in determining community dynamics. Microevolution may therefore be as important as species extinctions in shaping the response of microbial communities to environmental change

    Extreme Climatic Events Alter Aquatic Food Webs. A Synthesis of Evidence from a Mesocosm Drought Experiment

    Get PDF
    Extreme climatic events are expected to increase in frequency and intensity under climate change. Climate models predict shifts in rainfall patterns that will exacerbate drought, with potentially devastating effects on freshwater ecosystems. Experimental approaches are now advocated to explore the impact of extreme events on natural systems: here, we synthesise research conducted in a stream mesocosms experiment to simulate the effect of prolonged drought on the structure and functioning of complex food webs in a 2-year manipulation of flow regimes. Drought triggered the losses of species and trophic interactions, especially among rare predators, leading to the partial collapse of the food webs. Drying caused marked taxonomic and functional turnover in algal primary producers, from encrusting greens to diatoms, whereas the total number of algal taxa in the food webs remained unchanged. The recurrent drying disturbances generated transient macroinvertebrate communities dominated by relatively few, r-selected, species and compensatory dynamics sustained total macroinvertebrate densities. However, the standing biomass and secondary production of the food webs were more than halved by the droughts. Consumer-resource biomass flux was also strongly suppressed by disturbance, yet several network-level properties (such as connectance and interaction diversity) were conserved, driven by consumer-resource fidelity and a reconfiguration of fluxes within the webs, as production shifted down the size spectrum towards the smaller species. Our research demonstrates that flow extremes could have far-reaching consequences for the structure and functioning of complex freshwater communities
    corecore