72 research outputs found

    Phytochemical Constituents and Analgesic Activity of Ethyl Acetate Fraction of Punicagranatum L (Punicaceae)

    Get PDF
    Purpose: To investigate the active fraction of pomegranate fruit extract and screen it for analgesic activity.Methods: The analgesic activity of pomegranate ethyl acetate fraction (EtOAc) was examined using three models of pain: writhing, hot tail flick and plantar tests. EtOAc was administered by oral gavage in doses of 100, 150 and 200 mg/kg, p.o., for all the tests and compared to aspirin (100 mg/kg, p.o.) which was used as standard drug. Phytochemical studies of EtOAc were carried out by high performance liquid chromatography (HPLC) with ultraviolet (UV) detection and mass spectrometry (MS).Results: In the writhing test, the index of pain inhibition (IPI) was 41 % for EtOAc (200 mg/kg, p.o.) and 56 % for aspirin. In the hot tail flick test, EtOAc (200 mg/kg, p.o.) showed analgesia reaching its peak at 60 min with maximum possible analgesia (MPA) of 30.5 %, compared with 43.8 % for aspirin. Plantar test showed that pain was reduced by EtOAc in a dose-dependent manner and compared well with aspirin at 100 mg/kg, p.o., dose. The 200 mg/kg dose showed the highest effect, prolonging withdrawal latency in the left hind paw to 11.9 ± 0.3 compared to aspirin with 13.4 ± 0.2 (p < 0.001). HPLC analysis of EtOAc revealed the presence of gallic acid, ellagic acid and punicalagins A & B. Confirmation of their structures was achieved by mass spectroscopy.Conclusion: EtOAc has a central and peripheral analgesic effect that is most likely due to the presence of gallic acid and ellagic acid.Keywords: Analgesia, Pomegranate, Gallic acid, Ellagic acid, Punicalagins, Phytochemical constituent

    Anaplasma phagocytophilum infection subverts carbohydrate metabolic pathways in the tick vector, Ixodes scapularis

    Get PDF
    The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.Peer reviewedVeterinary Pathobiolog

    Metabolic regulation by p53

    Get PDF
    We are increasingly aware that cellular metabolism plays a vital role in diseases such as cancer, and that p53 is an important regulator of metabolic pathways. By transcriptional activation and other means, p53 is able to contribute to the regulation of glycolysis, oxidative phosphorylation, glutaminolysis, insulin sensitivity, nucleotide biosynthesis, mitochondrial integrity, fatty acid oxidation, antioxidant response, autophagy and mTOR signalling. The ability to positively and negatively regulate many of these pathways, combined with feedback signalling from these pathways to p53, demonstrates the reciprocal and flexible nature of the regulation, facilitating a diverse range of responses to metabolic stress. Intriguingly, metabolic stress triggers primarily an adaptive (rather than pro-apoptotic) p53 response, and p53 is emerging as an important regulator of metabolic homeostasis. A better understanding of how p53 coordinates metabolic adaptation will facilitate the identification of novel therapeutic targets and will also illuminate the wider role of p53 in human biology

    Aberrant lipid metabolism: an emerging diagnostic and therapeutic target in ovarian cancer

    Get PDF
    Ovarian cancer remains the most lethal gynaecological cancer. A better understanding of the molecular pathogenesis of ovarian cancer is of critical importance to develop early detection tests and identify new therapeutic targets that would increase survival. Cancer cells depend on de novo lipid synthesis for the generation of fatty acids to meet the energy requirements for increased tumour growth. There is increasing evidence that lipid metabolism is deregulated in cancers, including ovarian cancer. The increased expression and activity of lipogenic enzymes is largely responsible for increased lipid synthesis, which is regulated by metabolic and oncogenic signalling pathways. This article reviews the latest knowledge on lipid metabolism and the alterations in the expression of lipogenic enzymes and downstream signalling pathways in ovarian cancer. Current developments for exploiting lipids as biomarkers for the detection of early stage ovarian cancer and therapeutic targets are discussed. Current research targeting lipogenic enzymes and lipids to increase the cytotoxicity of chemotherapy drugs is also highlighted.Carmen E. Pyragius, Maria Fuller, Carmela Ricciardelli and Martin K. Oehle

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    p53 Plays a Role in Mesenchymal Differentiation Programs, in a Cell Fate Dependent Manner

    Get PDF
    Background: The tumor suppressor p53 is an important regulator that controls various cellular networks, including cell differentiation. Interestingly, some studies suggest that p53 facilitates cell differentiation, whereas others claim that it suppresses differentiation. Therefore, it is critical to evaluate whether this inconsistency represents an authentic differential p53 activity manifested in the various differentiation programs. Methodology/Principal Findings: To clarify this important issue, we conducted a comparative study of several mesenchymal differentiation programs. The effects of p53 knockdown or enhanced activity were analyzed in mouse and human mesenchymal cells, representing various stages of several differentiation programs. We found that p53 downregulated the expression of master differentiation-inducing transcription factors, thereby inhibiting osteogenic, adipogenic and smooth muscle differentiation of multiple mesenchymal cell types. In contrast, p53 is essential for skeletal muscle differentiation and osteogenic re-programming of skeletal muscle committed cells. Conclusions: These comparative studies suggest that, depending on the specific cell type and the specific differentiatio

    Cancer metabolism: current perspectives and future directions

    Get PDF
    Cellular metabolism influences life and death decisions. An emerging theme in cancer biology is that metabolic regulation is intricately linked to cancer progression. In part, this is due to the fact that proliferation is tightly regulated by availability of nutrients. Mitogenic signals promote nutrient uptake and synthesis of DNA, RNA, proteins and lipids. Therefore, it seems straight-forward that oncogenes, that often promote proliferation, also promote metabolic changes. In this review we summarize our current understanding of how ‘metabolic transformation' is linked to oncogenic transformation, and why inhibition of metabolism may prove a cancer′s ‘Achilles' heel'. On one hand, mutation of metabolic enzymes and metabolic stress sensors confers synthetic lethality with inhibitors of metabolism. On the other hand, hyperactivation of oncogenic pathways makes tumors more susceptible to metabolic inhibition. Conversely, an adequate nutrient supply and active metabolism regulates Bcl-2 family proteins and inhibits susceptibility to apoptosis. Here, we provide an overview of the metabolic pathways that represent anti-cancer targets and the cell death pathways engaged by metabolic inhibitors. Additionally, we will detail the similarities between metabolism of cancer cells and metabolism of proliferating cells

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
    corecore