234 research outputs found

    An analytic approximation to the Diffusion Coefficient for the periodic Lorentz Gas

    Full text link
    An approximate stochastic model for the topological dynamics of the periodic triangular Lorentz gas is constructed. The model, together with an extremum principle, is used to find a closed form approximation to the diffusion coefficient as a function of the lattice spacing. This approximation is superior to the popular Machta and Zwanzig result and agrees well with a range of numerical estimates.Comment: 13 pages, 4 figure

    Edmund Blunden and the Incitements of Japan

    Get PDF

    Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns

    Get PDF
    sions (37.7 Tg N yr #1 ) agrees closely with the GEIAbased a priori (36.4) and with the EDGAR 3.0 bottom-up inventory (36.6), but there are significant regional differences. A posteriori NO x emissions are higher by 50 -- 100% in the Po Valley, Tehran, and Riyadh urban areas, and by 25 -- 35% in Japan and South Africa. Biomass burning emissions from India, central Africa, and Brazil are lower by up to 50%; soil NO x emissions are appreciably higher in the western United States, the Sahel, and southern Europe

    Schools of excellence and equity: closing achievement gaps through academic emphasis

    Get PDF
    Currently, the debate in public schools centers on the achievement gap and is politically bathed in the language of equity and excellence. While research continues to suggest that our schools are plagued with inequities that perpetuate this gap and maintain the status quo, there are some schools that play a key role in raising student achievement for all students and in closing the achievement gap across socio-economic and racial lines. This study explored how K-5 elementary school principals of state recognized Honor Schools of Excellence are (or are not) pursuing, supporting, and achieving excellence and equity and sought to offer school leaders specific strategies for attaining this goal. For the purpose of this study, data were analyzed through the lens of Academic Emphasis. Schools with high levels of academic emphasis are characterized by high but achievable academic goals for all students, a belief that all students are capable of achieving these goals, an orderly and serious school environment, and an overall pursuit for academic success. Research demonstrates that academic emphasis is positively related to student achievement even after controlling for the socio-economic status of students. Drawing from this research, the Academic Emphasis framework used to analyze the data was organized according to the components of policies, practices, and beliefs. With these components as a template, three major themes emerged from the data – one regarding policy, one regarding practices, and one regarding beliefs. Within each of these themes, a number of sub-themes emerged. Each of these sub-themes is further divided into data from the small gap schools (SGS) and data from the large gap schools (LGS) to allow for a comparison and to shed light on policies, practices, and beliefs that result in both excellence and equity. The data analysis revealed similarities and differences among the small and large gap schools, each offering lessons for school leaders

    Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States

    Get PDF
    Global simulations of sulfate, nitrate, and ammonium aerosols are performed for the present day and 2050 using the chemical transport model GEOS-Chem. Changes in climate and emissions projected by the IPCC A1B scenario are imposed separately and together, with the primary focus of the work on future inorganic aerosol levels over the United States. Climate change alone is predicted to lead to decreases in levels of sulfate and ammonium in the southeast U.S. but increases in the Midwest and northeast U.S. Nitrate concentrations are projected to decrease across the U.S. as a result of climate change alone. In the U.S., climate change alone can cause changes in annually averaged sulfate-nitrate-ammonium of up to 0.61 μg/m^3, with seasonal changes often being much larger in magnitude. When changes in anthropogenic emissions are considered (with or without changes in climate), domestic sulfate concentrations are projected to decrease because of sulfur dioxide emission reductions, and nitrate concentrations are predicted to generally increase because of higher ammonia emissions combined with decreases in sulfate despite reductions in emissions of nitrogen oxides. The ammonium burden is projected to increase from 0.24 to 0.36 Tg, and the sulfate burden to increase from 0.28 to 0.40 Tg S as a result of globally higher ammonia and sulfate emissions in the future. The global nitrate burden is predicted to remain essentially constant at 0.35 Tg, with changes in both emissions and climate as a result of the competing effects of higher precursor emissions and increased temperature

    Distribution, variability and sources of tropospheric ozone over south China in spring: intensive ozonesonde measurements at five locations and modeling analysis

    Get PDF
    We examine the characteristics of the spatial distribution and variability of tropospheric ozone (O3) by analysis of 93 ozonesonde profiles obtained at five stations over south China (18–30 N) during a field campaign in April–May 2004. We use a global 3-D chemical transport model (GEOS-Chem) to interpret these characteristics and to quantify the sources of tropospheric O3 over south China during this period. The observed tropospheric O3 mixing ratios showed strong spatiotemporal variability due to a complex interplay of various dynamical and chemical processes. A prominent feature in the upper and middle troposphere (UT/MT) was the frequent occurrence of high O3 mixing ratios shown as tongues extending down from the lower stratosphere or as isolated layers at all stations. The model largely captured the observed pattern of day-to-day variability in tropospheric O3 mixing ratios at all stations, but often underestimated those tongues or isolated layers of O3 enhancements observed in the UT/MT, especially at low-latitude stations. We found that tropospheric O3 along the southeast China coast was mainly produced within Asia. Lightning NOx emissions (over South Asia and equatorial Africa) and/or stratospheric influences were responsible for major events of high O3 observed in the UT/MT at all stations. Underestimated contributions of these sources likely led to the model’s underestimate in the low-latitude UT/MT O3. This study emphasizes the need for improved understanding of lightning NOx emissions and stratospheric influences over the Eurasian and African continents and for better representation of these processes in current global models
    corecore