7 research outputs found
Rainfall Enhances Vegetation Growth but Does the Reverse Hold?
In the literature, there is substantial evidence presented of enhancement of vegetation growth and regrowth with rainfall. There is also much research presented on the decline in rainfall with land clearance. This article deals with the well documented decline in rainfall in southwestWestern Australia and discusses the literature that has been presented as to the rationale for the decline. The original view was that it was the result of climate change. More recent research points to the compounding effect of land use change. In particular, one study estimated, through simulation work with atmospheric models, that up to 50% of the decline could be attributed to land use change. For South Australia, there is an examination the pattern of rainfall decline in one particular region, using Cummins on the Eyre Peninsula as an example location. There is a statistically significant decrease in annual rainfall over time in that location. This is mirrored for the vast majority of locations studied in South Australia, most probably having the dual drivers of climate and land use change. Conversely, it is found that for two locations, Murray Bridge and Callington, southeast of Adelaide, there is marginal evidence for an increase in annual rainfall over the last two decades, during which, incidentally, Australia experienced the most severe drought in recorded history. The one feature common to these two locations is the proximity to the Monarto plateau, which lies between them. It was the site of extensive revegetation in the 1970s. It is conjectured that there could be a connection between the increase in rainfall and the revegetation, and there is evidence presented from a number of studies for such a connection, though not specifically relating to this location
Land cover changes and their biogeophysical effects on climate
Land cover changes (LCCs) play an important role in the climate system. Research over recent decades highlights the impacts of these changes on atmospheric temperature, humidity, cloud cover, circulation, and precipitation. These impacts range from the local- and regional-scale to sub-continental and global-scale. It has been found that the impacts of regional-scale LCC in one area may also be manifested in other parts of the world as a climatic teleconnection. In light of these findings, this article provides an overview and synthesis of some of the most notable types of LCC and their impacts on climate. These LCC types include agriculture, deforestation and afforestation, desertification, and urbanization. In addition, this article provides a discussion on challenges to, and future research directions in, assessing the climatic impacts of LCC
Land use/land cover changes and climate: modeling analysis and observational evidence
This article summarizes the changes in landscape structure because of human land management over the last several centuries, and using observed and modeled data, documents how these changes have altered biogeophysical and biogeochemical surface fluxes on the local, mesoscale, and regional scales. Remaining research issues are presented including whether these landscape changes alter large-scale atmospheric circulation patterns far from where the land use and land cover changes occur. We conclude that existing climate assessments have not yet adequately factored in this climate forcing. For those regions that have undergone intensive human landscape change, or would undergo intensive change in the future, we conclude that the failure to factor in this forcing risks a misalignment of investment in climate mitigation and adaptation
Impacts of land use/land cover change on climate and future research priorities
Several recommendations have been proposed for detecting land use and land cover change (LULCC) on the environment from, observed climatic records and to modeling to improve its understanding and its impacts on climate. Researchers need to detect LULCCs accurately at appropriate scales within a specified time period to better understand their impacts on climate and provide improved estimates of future climate. The US Climate Reference Network (USCRN) can be helpful in monitoring impacts of LULCC on near-surface atmospheric conditions, including temperature. The USCRN measures temperature, precipitation, solar radiation, and ground or skin temperature. It is recommended that the National Climatic Data Center (NCDC) and other climate monitoring agencies develop plans and seek funds to address any monitoring biases that are identified and for which detailed analyses have not been completed