174 research outputs found

    Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)

    Get PDF
    Versión del editor

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF

    The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling

    Get PDF
    We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.& nbsp;Published under an exclusive license by AIP Publishing

    Peripheral temperature gradient screening of high-Z impurities in optimised 'hybrid' scenario H-mode plasmas in JET-ILW

    Get PDF
    Screening of high-Z (W) impurities from the confined plasma by the temperature gradient at the plasma periphery of fusion-grade H-mode plasmas has been demonstrated in the JET-ILW (ITER-like wall) tokamak. Through careful optimisation of the hybrid-scenario, deuterium plasmas with sufficient heating power (greater than or similar to 32 MW), high enough ion temperature gradients at the H-mode pedestal top can be achieved for the collisional, neo-classical convection of the W impurities to be directed outwards, expelling them from the confined plasma. Measurements of the W impurity fluxes between and during edge-localised modes (ELMs) based on fast bolometry measurements show that in such plasmas there is a net efflux (loss) between ELMs but that ELMs often allow some W back into the confined plasma. Provided steady, high-power heating is maintained, this mechanism allows such plasmas to sustain high performance, with an average D-D neutron rate of similar to 3.2 x 10(16) s(-1) over a period of similar to 3 s, after an initial overshoot (equivalent to a D-T fusion power of similar to 9.4 MW), without an uncontrolled rise in W impurity radiation, giving added confidence that impurity screening by the pedestal may also occur in ITER, as has previously been predicted (Dux et al 2017 Nucl. Mater. Energy 12 28-35)

    Testing a prediction model for the H-mode density pedestal against JET-ILW pedestals

    Get PDF
    The neutral ionisation model proposed by Groebner et al (2002 Phys. Plasmas 9 2134) to determine the plasma density profile in the H-mode pedestal, is extended to include charge exchange processes in the pedestal stimulated by the ideas of Mahdavi et al (2003 Phys. Plasmas 10 3984). The model is then tested against JET H-mode pedestal data, both in a 'standalone' version using experimental temperature profiles and also by incorporating it in the Europed version of EPED. The model is able to predict the density pedestal over a wide range of conditions with good accuracy. It is also able to predict the experimentally observed isotope effect on the density pedestal that eludes simpler neutral ionization models
    corecore