5,696 research outputs found

    Feasibility study of the application of existing techniques to remotely monitor hydrochloric acid in the atmosphere

    Get PDF
    A critical evaluation of existing optical remote sensors for HCl vapor detection in solid propellant rocket plumes is presented. The P branch of the fundamental vibration-rotation band was selected as the most promising spectral feature to sense. A computation of transmittance for HCl vapor, an estimation of interferent spectra, the application of these spectra to computer modelled remote sensors, and a trade-off study for instrument recommendation are also included

    A need for speed: Objectively identifying full-body kinematic and neuromuscular features associated with faster sprint velocities

    Get PDF
    Sprinting is multifactorial and dependent on a variety of kinematic, kinetic, and neuromuscular features. A key objective in sprinting is covering a set amount of distance in the shortest amount of time. To achieve this, sprinters are required to coordinate their entire body to achieve a fast sprint velocity. This suggests that a whole-body kinematic and neuromuscular coordinative strategy exists which is associated with improved sprint performance. The purpose of this study was to leverage inertial measurement units (IMUs) and wireless surface electromyography (sEMG) to find coordinative strategies associated with peak over-ground sprint velocity using machine learning. We recruited 40 healthy university age sprint-based athletes from a variety of athletic backgrounds. IMU and sEMG data were used as inputs into a principal components analysis (PCA) to observe major modes of variation (i.e., PC scores). PC scores were then used as inputs into a stepwise multivariate linear regression model to derive associations of each mode of variation with peak sprint velocity. Both the kinematic (R2 = 0.795) and sEMG data (R2 = 0.586) produced significant multivariate linear regression models. The PCs that were selected as inputs into the multivariate linear regression model were reconstructed using multi-component reconstruction to produce a representation of the whole-body movement pattern and changes in the sEMG waveform associated with faster sprint velocities. The findings of this work suggest that distinct features are associated with faster sprint velocity. These include the timing of the contralateral arm and leg swing, stance leg kinematics, dynamic trunk extension at toe-off, asymmetry between the right and left swing side leg and a phase shift feature of the posterior chain musculature. These results demonstrate the utility of data-driven frameworks in identifying different coordinative features that are associated with a movement outcome. Using our framework, coaches and biomechanists can make decisions based on objective movement information, which can ultimately improve an athlete’s performance.Natural Sciences and Engineering Research Council (NSERC) of Canada & Brock Library Open Access Publishing Fun

    Recent Decisions

    Get PDF
    Comments on recent decisions by Sidney Baker, Arthur L. Beaudette, Mark Harry Berens, Francis W. Collopy, Patrick F. Coughlin, Benedict R. Danko, Joseph M. Gaydos, William T. Huston, Francis J. Keating, John E. Lindberg, James D. Matthews, Lawrence S. May, Jr., Maurice J. Moriarty, George J. Murphy, Jr., William J. O\u27Connor, Charles James Perrin, Albert R. Ritcher, Henry Martin Shine, Jr., Cyril C. Vidra, and Dale A. Winnie

    Double-clad fiber-based multifunctional biosensors and multimodal bioimaging systems: technology and applications

    Get PDF
    Optical fibers have been used to probe various tissue properties such as temperature, pH, absorption, and scattering. Combining different sensing and imaging modalities within a single fiber allows for increased sensitivity without compromising the compactness of an optical fiber probe. A double-clad fiber (DCF) can sustain concurrent propagation modes (single-mode, through its core, and multimode, through an inner cladding), making DCFs ideally suited for multimodal approaches. This study provides a technological review of how DCFs are used to combine multiple sensing functionalities and imaging modalities. Specifically, we discuss the working principles of DCF-based sensors and relevant instrumentation as well as fiber probe designs and functionalization schemes. Secondly, we review different applications using a DCF-based probe to perform multifunctional sensing and multimodal bioimaging.Kathy Beaudette, Jiawen Li, Joseph Lamarre, Lucas Majeau and Caroline Boudou

    Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger

    Get PDF
    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.Comment: 10 pages, 7 figure

    Search for R-parity Violating Supersymmetry in Dimuon and Four-Jets Channel

    Get PDF
    We present results of a search for R-parity-violating decay of the neutralino chi_1^0, taken to be the Lightest Supersymmetric Particle. It is assumed that this decay proceeds through one of the lepton-number violating couplings lambda-prime_2jk (j=1,2; k=1,2,3). This search is based on 77.5 pb-1 of data, collected by the D0 experiment at the Fermilab Tevatron in ppbar collisions at a center of mass energy of 1.8 TeV in 1992-1995.Comment: 10 pages, 3 figure

    Triggering on electrons, jets and tau leptons with the CMS upgraded calorimeter trigger for the LHC RUN II

    Get PDF
    The Compact Muon Solenoid (CMS) experiment has implemented a sophisticated two-level online selection system that achieves a rejection factor of nearly 10e5. During Run II, the LHC will increase its centre-of-mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2e34cm-2s-1. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition (DAQ) system has been upgraded. A novel concept for the L1 calorimeter trigger is introduced the Time Multiplexed Trigger (TMT). In this design, nine main receive each all of the calorimeter data from an entire event provided by 18 preprocessors. This design is not different from that of the CMS DAQ and HLT systems. The advantage of the TMT architecture is that a global view and full granularity of the calorimeters can be exploited by sophisticated algortihms. The goal is to maintain the current thresholds for calorimeter objects and improve the performance for their selection. The performance of these algorithms will be demonstrated, both in terms of efficiency and rate reduction. The callenging aspects of the pile-up mitigation and firmware design will be presented

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Improved W boson mass measurement with the D0 detector

    Get PDF
    We have measured the W boson mass using the D0 detector and a data sample of 82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays, where the electron is close to a boundary of a central electromagnetic calorimeter module. Such 'edge' electrons have not been used in any previous D0 analysis, and represent a 14% increase in the W boson sample size. For these electrons, new response and resolution parameters are determined, and revised backgrounds and underlying event energy flow measurements are made. When the current measurement is combined with previous D0 W boson mass measurements, we obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0 measurement is primarily due to the improved determination of the response parameters for non-edge electrons using the sample of Z bosons with non-edge and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table

    Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for new physics is presented based on an event signature of at least three jets accompanied by large missing transverse momentum, using a data sample corresponding to an integrated luminosity of 36 inverse picobarns collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector at the LHC. No excess of events is observed above the expected standard model backgrounds, which are all estimated from the data. Exclusion limits are presented for the constrained minimal supersymmetric extension of the standard model. Cross section limits are also presented using simplified models with new particles decaying to an undetected particle and one or two jets
    corecore