821 research outputs found
Anthropogenic climate change impacts on copepod trait biogeography
Copepods are among the most abundant marine metazoans and form a key link between marine primary producers, higher trophic levels, and carbon sequestration pathways. Climate change is projected to change surface ocean temperature by up to 4°C in the North Atlantic with many associated changes including slowing of the overturning circulation, areas of regional freshening, and increased salinity and reductions in nutrients available in the euphotic zone over the next century. These changes will lead to a restructuring of phytoplankton and zooplankton communities with cascading effects throughout the food web. Here we employ observations of copepods, projected changes in ocean climate, and species distribution models to show how climate change may affect the distribution of copepod species in the North Atlantic.
On average species move northeast at a rate of 14.1 km decade. Species turnover in copepod communities will range from 5% to 75% with the highest turnover rates concentrated in regions of pronounced temperature increase and decrease. The changes in species range vary according to copepod traits with the largest effects found to occur in the cooling, freshening area in the subpolar North Atlantic south of Greenland and in an area of significant warming along the Scotian shelf. Large diapausing copepods (>2.5 mm) which are higher in lipids and a crucial food source for
whales, may have an advantage in the cooling waters due to their life-history strategy that facilitates their survival in the arctic environment. Carnivorous copepods show a basin wide increase in species richness and show significant habitat area increases when their distribution moves poleward while herbivores see significant habitat
area losses. The trait-specific effects highlight the complex consequences of climate change for the marine food web
The effect of mixing entire male pigs prior to transport to slaughter on behaviour, welfare and carcass lesions
peer-reviewedData set for article is also provided.Research is needed to validate lesions recorded at meat inspection as indicators of pig welfare on farm. The aims were to determine the influence of mixing pigs on carcass lesions and to establish whether such lesions correlate with pig behaviour and lesions scored on farm. Aggressive and mounting behaviour of pigs in three single sex pens was recorded on Day −5, −2, and −1 relative to slaughter (Day 0). On Day 0 pigs were randomly allocated to 3 treatments (n = 20/group) over 5 replicates: males mixed with females (MF), males mixed with males (MM), and males unmixed (MUM). Aggressive and mounting behaviours were recorded on Day 0 at holding on farm and lairage. Skin/tail lesions were scored according to severity at the farm (Day −1), lairage, and on the carcass (Day 0). Effect of treatment and time on behaviour and lesions were analysed by mixed models. Spearman rank correlations between behaviour and lesion scores and between scores recorded at different stages were determined. In general, MM performed more aggressive behaviour (50.4 ± 10.72) than MUM (20.3 ± 9.55, P < 0.05) and more mounting (30.9 ± 9.99) than MF (11.4 ± 3.76) and MUM (9.8 ± 3.74, P < 0.05). Skin lesion scores increased between farm (Day −1) and lairage (P < 0.001), but this tended to be significant only for MF and MM (P = 0.08). There was no effect of treatment on carcass lesions and no associations were found with fighting/mounting. Mixing entire males prior to slaughter stimulated mounting and aggressive behaviour but did not influence carcass lesion scores. Carcass skin/tail lesions scores were correlated with scores recorded on farm (rskin = 0.21 and rtail = 0.18, P < 0.01) suggesting that information recorded at meat inspection could be used as indicators of pig welfare on farm.This study was part of the PIGWELFIND project funded by the Department of Agriculture, Food and the Marine (DAFM), Ireland
Global and regional brain metabolic scaling and its functional consequences
Background: Information processing in the brain requires large amounts of
metabolic energy, the spatial distribution of which is highly heterogeneous
reflecting complex activity patterns in the mammalian brain.
Results: Here, it is found based on empirical data that, despite this
heterogeneity, the volume-specific cerebral glucose metabolic rate of many
different brain structures scales with brain volume with almost the same
exponent around -0.15. The exception is white matter, the metabolism of which
seems to scale with a standard specific exponent -1/4. The scaling exponents
for the total oxygen and glucose consumptions in the brain in relation to its
volume are identical and equal to , which is significantly larger
than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on
body mass.
Conclusions: These findings show explicitly that in mammals (i)
volume-specific scaling exponents of the cerebral energy expenditure in
different brain parts are approximately constant (except brain stem
structures), and (ii) the total cerebral metabolic exponent against brain
volume is greater than the much-cited Kleiber's 3/4 exponent. The
neurophysiological factors that might account for the regional uniformity of
the exponents and for the excessive scaling of the total brain metabolism are
discussed, along with the relationship between brain metabolic scaling and
computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen
The role of rock joint frictional strength in the containment of fracture propagation
The fracturing phenomenon within the reservoir environment is a complex process that is controlled by several factors and may occur either naturally or by artificial drivers. Even when deliberately induced, the fracturing behaviour is greatly influenced by the subsurface architecture and existing features. The presence of discontinuities such as joints, artificial and naturally occurring faults and interfaces between rock layers and microfractures plays an important role in the fracturing process and has been known to significantly alter the course of fracture growth. In this paper, an important property (joint friction) that governs the shear behaviour of discontinuities is considered. The applied numerical procedure entails the implementation of the discrete element method to enable a more dynamic monitoring of the fracturing process, where the joint frictional property is considered in isolation. Whereas fracture propagation is constrained by joints of low frictional resistance, in non-frictional joints, the unrestricted sliding of the joint plane increases the tendency for reinitiation and proliferation of fractures at other locations. The ability of a frictional joint to suppress fracture growth decreases as the frictional resistance increases; however, this phenomenon exacerbates the influence of other factors including in situ stresses and overburden conditions. The effect of the joint frictional property is not limited to the strength of rock formations; it also impacts on fracturing processes, which could be particularly evident in jointed rock masses or formations with prominent faults and/or discontinuities
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Potential Involvement of LOX-1 in Functional Consequences of Endothelial Senescence
Numerous studies have described the process of senescence associated with accumulation of oxidative damage, mutations and decline in proliferative potential. Although the changes observed in senescent cells are likely to result in significant phenotypic alterations, the studies on consequences of endothelial senescence, especially in relation to aging-associated diseases, are scarce. We have analyzed effects of senescence on the functions of endothelial cells relevant to the development of atherosclerosis including angiogenesis, adhesion, apoptosis and inflammation. In the course of progressing through the passages, human umbilical vein endothelial cells (HUVECs) displayed significant increase in size (+36% passage 12 vs. passage 4 , p<0.001) and reduction in both basal and VEGF-stimulated tube formation. The analysis of a scavenger receptor LOX-1, a key molecule implicated in atherogenesis, revealed a significant decline of its message (mRNA) and protein content in senescent endothelial cells (−33%) and in aortas of 50 wk (vs. 5 wk) old mice (all p<0.01). These effects were accompanied by a marked reduction of the basal expression of VCAM-1 and ICAM-1. Compared to early cultures, late passage HUVECs also exhibited nuclear translocation of NF-κB (p65) and reciprocal shifts in BAX and BCL2 protein content resulting in almost 2-fold increase in BAX/BCL2 ratio and 3-fold increase in apoptotic response to TNFα exposure (p<0.04). These changes in senescent endothelial cells are suggestive of aberrant responses to physiological stimuli resulting in a less permissive environment for tissue remodeling and progression of diseases requiring angiogenesis and cell adhesion in elderly, possibly, mediated by LOX-1
Endothelial Progenitor Cells (EPCs) as Gene Carrier System for Rat Model of Human Glioma
Due to their unique property to migrate to pathological lesions, stem cells are used as a delivery vehicle for therapeutic genes to tumors, especially for glioma. It is critically important to track the movement, localization, engraftment efficiency and functional capability or expression of transgenes of selected cell populations following transplantation. The purposes of this study were to investigate whether 1) intravenously administered, genetically transformed cord blood derived EPCs can carry human sodium iodide symporter (hNIS) to the sites of tumors in rat orthotopic model of human glioma and express transgene products, and 2) whether accumulation of these administered EPCs can be tracked by different in vivo imaging modalities.Collected EPCs were cultured and transduced to carry hNIS. Cellular viability, differential capacity and Tc-99m uptake were determined. Five to ten million EPCs were intravenously administered and Tc-99-SPECT images were acquired on day 8, to determine the accumulation of EPCs and expression of transgenes (increase activity of Tc-99m) in the tumors. Immunohistochemistry was performed to determine endothelial cell markers and hNIS positive cells in the tumors. Transduced EPCs were also magnetically labeled and accumulation of cells was confirmed by MRI and histochemistry. SPECT analysis showed increased activity of Tc-99m in the tumors that received transduced EPCs, indicative of the expression of transgene (hNIS). Activity of Tc-99m in the tumors was also dependent on the number of administered transduced EPCs. MRI showed the accumulation of magnetically labeled EPCs. Immunohistochemical analysis showed iron and hNIS positive and, human CD31 and vWF positive cells in the tumors.EPC was able to carry and express hNIS in glioma following IV administration. SPECT detected migration of EPCs and expression of the hNIS gene. EPCs can be used as gene carrier/delivery system for glioma therapy as well as imaging probes
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …