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Hybridization of parasites is an emerging public health concern at the interface of infectious
disease biology and evolution. Increasing economic development, human migration, global
trade, and climate change are all shifting the geographic distribution of existing human,
livestock, companion animal, and wildlife parasites [1–9]. As a result, human populations
encounter new infections more frequently, and coinfection by multiple parasites from different
lineages or species within individual hosts occurs. Coinfection may have a large impact on the
hosts and parasites involved, often as a result of synergistic or antagonistic interactions between
parasites [10]. Indeed, mixed-species coinfections have been found to influence parasite estab-
lishment, growth, maturation, reproductive success, and/or drug efficacy [11–13]. However,
coinfections can allow for heterospecific (between-species or between-lineage) mate pairings,
resulting in parthenogenesis (asexual reproduction in which eggs occur without fertilization),
introgression (the introduction of single genes or chromosomal regions from one species into
that of another through repeated backcrossing), and whole-genome admixture through hybrid-
ization [14].

Recent molecular developments have revealed instances of fertile hybridization and intro-
gression in plants [15], animals [16,17], and humans [18]. However, modern genetics and
genomics have also uncovered the first confirmed cases of introgression within eukaryotic par-
asites [14,19]. Examples for such successful reticulate evolution in parasites include, but are not
exclusive to, causative agents of important diseases initiated by fungi (Cryptococcus [20]), hel-
minthic worms (Schistosoma, Fasciola, Ascaris, and Trichinella [21,22–24]), and protozoa
(Plasmodium, Leishmania, Toxoplasma, and Trypanosoma [25,26–31]), as well as their vectors.
These cases involve introgression between members of the neglected tropical diseases (NTDs)
and/or neglected zoonotic diseases (NZDs)—highly debilitating diseases infecting more than a
sixth of the world’s human population (and their livestock), with devastating consequences for
individuals and communities. Such diseases are predominantly diseases of the world’s poorest
communities, afflicting those people who are most at risk of contracting mixed parasitic infec-
tions (and hence also at risk for potential novel introgressed parasite infections) and at the
same time least likely to get proper medical care once infected [32].

Evidence gathered to date, mainly from studies on nonparasitic animals and plants, suggests
that hybridization can have a major evolutionary impact [33]. While hybridization can result
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in lower average fitness due to F1 sterility and inviability, caused by negative epistatic interac-
tions [34–36] and the disruption of beneficial gene complexes [37,38], hybridization is at the
same time a rich source of new genetic variation [39]. This can provide the raw material for
natural selection to shape the evolution of ecologically relevant traits [33,40,41]. Thus, while a
hybrid offspring, under certain conditions, may be less fit than its purebred offspring counter-
parts from either parental line, hybridization broadens the “working surface” for selection by
producing a whole range of potentially adaptive phenotypes, ranging from one parent to the
other and beyond. In nonparasitic taxa, hybridization has already been shown to promote geo-
graphic range expansions of populations (for example, in spiders [42]) as well as adaptation to
new environments (Darwin finches [43]). There is also increasing evidence that hybridization
can lead to the functional diversification of a group, as shown inHelianthus sunflowers [44],
and even to speciation (reviewed in [40,45,46]). One key example of this is the case of “trans-
gressive hybrids,” i.e., hybrids expressing extreme phenotypes that do not reside in either of the
parental populations. These are “hopeful monsters” with respect to their evolutionary potential
because they can diverge from their parents ecologically and may quickly become reproduc-
tively isolated from them [47–49]. In addition to broadening the selection surface, hybridiza-
tion can also speed up the process of adaptation. After hybridization events, new alleles or
allelic combinations that happen to be beneficial in the new environment are available immedi-
ately. This is in contrast to nonhybrid populations in which adaptation relies on alleles brought
in via immigration or de novo mutation, both processes that require relatively longer periods
of time [50,51]. As a consequence, populations with a hybrid origin may survive rapid environ-
mental change better than their nonhybrid parents, as recently shown in yeast [52].

We predict that parasites are one of the major groups of organisms in which hybridization
can have major impacts on the evolution and diversification of a group [14,19] and can lead to
speciation [53], affecting key pathogenic traits and transmission. Hybridization in parasites
may thus pose a serious challenge for the prevention, effective control, and therapy of disease
[19]. While it has been suggested that hybridization and introgression between parasites can
potentially drive the emergence and rapid evolution of novel zoonotic diseases [14], most stud-
ies to date are descriptive and do not consider the evolutionary consequences. Here, we review
some of the most recent advances in the detection of hybridization in eukaryotic parasites (and
their vectors) and discuss the significance of parasite hybridization for adaptive evolution and
public health supported by relevant case studies in Schistosoma spp. (Box 1), Leishmania and
Trypanosoma (Box 2), and the malaria vector Anopheles (Box 3). Given the role of infectious
agents in our changing world, particularly in terms of emerging parasitic disease in response to
anthropogenic change [32], it is time for a new and integrative perspective. Here, we argue for
the integration of parasitology, disease biology, and evolutionary biology to understand the
consequences of parasite hybridization to aid in the management and prevention of disease.

Consequences of Hybridization in Parasites
Since multidrug resistance became a worldwide problem in pathogenic bacteria in the 1950s
[54], we know that the exchange of genetic material via horizontal gene transfer among bacte-
rial taxa has contributed to their evolution and pathogenesis [55,56]. Horizontal gene transfer
can be advantageous and confer higher fitness, for instance, through the acquisition of antibi-
otic drug resistance [57] or through the spread of virulence factors; a well-studied example is
the Shiga toxin genes exchanged between Escherichia coli and Shigella bacterial pathogens [58].
There are also several examples of recombinant human viruses that have exchanged genes
with other strains with detrimental effects (Spanish flu, human rotavirus, and dengue fever;
[59,60,61]). Conversely, despite their equally negative impact on host populations, not much is
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known about the hybridization of eukaryotic parasites, their frequency in the wild, or how
hybridization may affect their spread and pathogenicity. Modern molecular techniques, how-
ever, can expose the signature of hybridization in the genome more rapidly and accurately,
thereby increasing the number of recent reports of parasite hybridization.

We outline what we believe will be the most important and/or potentially dangerous effects
of hybridization in eukaryotic parasites: (1) the generation of novel and extreme infection
phenotypes, (2) an increase in host range, being just one component of (3) an increase in trans-
mission potential, (4) an increase in parasite evolutionary potential with consequences for
host–parasite coevolution, (5) the breakdown of host-specific adaptations, and also (6) an
altered response to drug therapy (Fig 1).

Box 1. Case Example—Introgression in Helminths: Schistosomiasis

Schistosoma spp. are the causative agents of schistosomiasis, a prevalent, chronic, and
debilitating helminthic disease of humans and animals that occurs across much of the
developing world. As early as 1948, there have been phenotypic reports of eggs indicative
of potential Schistosoma haematobium–S.mattheei hybrids in Rhodesia/Zimbabwe [75],
S. bovis–S. curassoni hybrids in West African ruminants, S. haematobium–S.mattheei
hybrids in Southern African ruminants, and S. haematobium–S. bovis hybrids in humans
fromWest Africa [76–78]. More recently, ITS1+2 and cox1 barcoding studies of viable
schistosome miracidial larvae hatched from the stool and urine of Senegalese school chil-
dren confirmed bidirectional hybridization between human S. haematocium and live-
stock S. bovis [67], as well as for S. haematobium and S. curassoni [79]. Studies from
infected snails in Kenya have observed hybrid cercariae between S.mansoni from
humans and its sister species, S. rodhaini, from rodents [80]. These authors, using micro-
satellite markers (ribosomal DNA [rDNA] and mitochondrial DNA [mtDNA]), demon-
strated that these hybrids produce viable offspring through first or successive generation
backcrosses with S.mansoni. Unlike the S. haematobium and S. bovis or S. currassoni
hybrids described above, the direction of introgression appeared highly asymmetric,
causing unidirectional gene flow from the rodent S. rodhaini to the human S.mansoni
[80]. Recent evidence from infected humans in Senegal has also revealed the potential for
introgressions between the more phylogenetically distant pairings of the two major
human schistosome species in Africa, S. haematobium and S.mansoni, a pairing previ-
ously thought to result in unviable eggs exclusively through parthogenesis [81]. These
studies combined provide convincing evidence that schistosome species readily hybridize
in nature, which may have major implications in light of the current global push for
human disease control programmes to shift from controlling morbidity to halting trans-
mission [32]. How such introgression may alter host range is perhaps the most pressing
area for future research. Many schistosome species infecting livestock have a broader
geographical range beyond Asia and Africa, with compatible snail intermediate hosts
present. Novel zoonotic hybrids may therefore have the potential to be a global disease,
particularly in our current climate of global warming and increased human and animal
movement and transportation. This may be highlighted most clearly where novel intro-
gressed hybrids between human S. haematobium and livestock S. bovis have recently
been identified, with substantial ongoing transmission amongst both local residents and
tourists, within Europe [82–84].
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1. As a result of new allelic combinations produced by hybridization, hybrid parasites may
show enhanced phenotypic characteristics compared to the parents. Hybrids may be better
at host exploitation, such that they may be more efficient at obtaining nutrition from the
host, leading to higher fecundity or faster maturation time. Also, certain new hybrid parasite
genotypes have been shown to be better at avoiding recognition and resistance from the
host’s adaptive immune system, potentially leading to higher infectivity and unusual pathol-
ogies [29,62]. We thus predict that hybrid parasites are able to exploit novel resources and
sites of infection within the host, which parental genotypes cannot utilize.

2. Hybrid parasites may be able to infect a greater range of host species [14,19,63]. While
parental parasites are often restricted to one host species, hybrid parasites may be able to
exploit both. Interspecific Schistosoma spp. hybrids, for instance, are able to infect both
parental intermediate snail hosts (Box 1) [21]. In addition, just as some hybrids of nonpara-
sitic taxa adapt to new ecological conditions and colonize novel environments that neither
of the parents can survive [44,49], we would predict that hybrid parasites may be able to
infect entirely new host species. As an indication that this indeed occurs in the wild, two
plant pathogenic fungi (Phytophthora spp. infecting alder trees [64] and Zymoseptoria pseu-
dotritici infecting a range of grasses [53]) and one amphibian fungal pathogen (a new line-
age of Batrachochytrium dendrobatidis causing dramatic outbreaks of chytridiomycosis

Box 2. Case Example—Introgression in Protozoans: Leishmaniosis
and Trypanosomiasis

Introgressions can occur within the causative agents of protozoal diseases leishmaniasis
and trypanosomiasis (Kinetoplastida: Trypanosomatidae) [85–88]. Approximately 30,000
people in 36 countries of sub-Saharan Africa suffer from human African trypanosomiasis
(HAT), and Chagas disease has been classed as the most important vector-borne infection
in Latin America, affecting an estimated 7–8 million humans, with around 21,000 deaths
per year [89]. Leishmania parasites are another of the most important vector-borne patho-
gens in the developing world. Both Leishmania and Trypanosoma are also parasites with
major zoonotic reservoirs. Two of the major lineages of Trypanosoma cruzi (discrete typing
units [DTUs] III and IV) are now thought to have arisen by intraspecific hybridisation
[87], despite their predominant mode of asexual reproduction, and introgression between
subspecies has been associated with virulence [88]. Similarly, whilst asexual reproduction
through clonal propagation has been proposed to be the major reproductive mechanism
across the genus Leishmania, a hybridizing sexual cycle has been detected within its sand
fly vector from across a range of geographical locations [90,91]. Whole-genome sequencing
of Leishmania parasites isolated from sand flies from a Turkish endemic area indicated
that variation in these parasites arose following a single cross between two phylogenetically
distinct strains. Furthermore, whilst it appears that these populations do reproduce pri-
marily clonally following this original hybridization event, subsequent recombination
between the progeny does also occur [92]. The potentially large epidemiological conse-
quences of such recombination events may be demonstrated by the observation that Leish-
mania infantum/L.major hybrids possess an enhanced host range, as hybrid offspring,
and, unlike their parental single species, they are able to infect another vector, Phlebotomus
papatasi [93].
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[65]), which all emerged via hybridization, have been found to live on host species neither
of their parents are found on.

3. With increasing land use and current rates of anthropogenic change across both the envi-
ronment and agricultural/livestock practices, we predict that recombinant parasite geno-
types will be generated at an increasing rate. Encounters between previously isolated
parasite species become more frequent when geographic and ecological barriers that

Box 3. Case Example—Introgression in the Parasite Vector
Anopheles: Malaria

Anopheles has become a model organism at the interface of speciation genomics and epi-
demiology [94], showcasing the potential perils of hybridization for public health but
also the possible benefits of using controlled and induced hybridization as a means for
disease control. Anophelesmosquitoes are vectors for malaria, which is caused by para-
sitic protozoans belonging to the genus Plasmodium. Malaria affects 200 million people a
year worldwide, with an estimated 0.5–1 million deaths per year, mostly among young
children in sub-Saharan Africa, where 90% of the world’s malaria deaths occur [95].

There are approximately 60 different species of Anopheles found worldwide [96], and
genomic sequences of 16 Anopheles species (including vector and nonvector species)
have recently become available [94,97]. These sequences have revealed fast and flexible
evolutionary rates with respect to traits affecting their transmission potential, shown
extensive introgression between Anopheles species, and suggested that enhanced vectorial
capacity and adaptation to humans as primary hosts can result from interspecific genetic
exchange. A multilocus single nucleotide polymorphism (SNP) genotyping panel is also
at hand to detect F1 hybrids and backcrosses between the main vectors of malaria,
Anopheles gambiae sensu stricto (S form) and A. coluzzii (M form) [98].

Control of Anopheles through insecticides, such as dichlorodiphenyltrichloroethane
(DDT) and pyrethroids, has contributed to the prevention of malaria, but resistance to
insecticides has recently emerged in Anopheles populations [99,100]. Recent studies have
demonstrated rapid adaptive introgression of the insecticide resistance mutation Vgsc-
L1014F from A. gambiae to A. coluzzii, in response to strong anthropogenic selection
from increased insecticide use [101,102]. Others have found gene flow occurring at rates
“far from inconsequential” between other species of Anopheles (e.g., between A. gambiae
and A. arabiensis in Uganda [99,103] and A. sinensis and A. kleini in Korea [104]).
Experimental interpopulation crosses of A. gambiae, monitored for traits determining
their malaria transmission potential, scored higher for fecundity, body size, adult longev-
ity, and average blood meal size, compared to both parental strains [105]. It is thus con-
ceivable that the fitness-enhancing potential of hybridization may also apply to closely
related interspecific hybrid crosses.

Hybridization between Anopheles species may have beneficial effects for disease con-
trol. Asymmetric introgression has recently been shown to transfer adaptive immunity
and increased refractoriness to the Plasmodium pathogen from A. coluzzii to A. gambiae
in Guinea [106]. Another opportunity for disease control is to modify the host preference
of A. gambiae from humans to cattle by hybridizing it with A. quadriannulatus, a more
zoophilic nonvector species, as a strategy to decrease its competence as malaria vector
[107].
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previously existed between parasite species are lost. Taking together the potential impact
of hybrid superiority and host range expansions (described in 2) and an increase in anthro-
pogenically mediated parasite dispersal, the transmission of disease may become consider-
ably facilitated [66,67]. This may lead to epidemics, threaten global food security, and
endanger natural animal and plant populations. For instance, the increasing creation and
alteration of water bodies for agriculture can lead to areas of overlap and co-occurrence of
the different intermediate snail host species of Schistosoma parasites [66,68]. This generates
ample opportunity for coinfections of the definitive host by different Schistosoma species,
which may then hybridize. In addition, humans and livestock are drawn to the same water
resources, where they can both release parasites and become infected, thus creating a “hot-
bed” for disease transmission between human and livestock.

4. Evolutionary theory predicts that elevated virulence and genetic diversity, both potential
outcomes of parasite hybridization, can increase the evolutionary potential of parasites and
alter the host–parasite coevolutionary process [69]. For instance, for Phytophthora, hybrid-
ization has led to a range of new species with particularly aggressive pathogenicity [64], and
hybrid lineages of the amphibian zoosporic fungus Batrachochytrium, which cause dramatic
outbreaks of chytridiomycosis, have been found to be hypervirulent to many hosts [65]. In
the context of coevolutionary races, higher virulence of hybrid parasites may impose stron-
ger selection for host resistance.

5. Hybridization in parasites could, however, also be maladaptive for the parasites because of
fitness-reducing genetic incompatibilities (negative epistasis) and the breakdown of host-
specific adaptations, potentially leading to reduced infectivity/virulence. While such out-
breeding depression is well known from free-living organisms, studies on the fitness of
hybrid parasites are scarce. Outbreeding depression has been reported in a snail–trematode
host–parasite system (Potamopyrgus antipodarum–Microphallus sp.), in which hybrid para-
sites suffer from reduced infectivity in both parental host populations [70,71]. In such cases,
we predict that hybrid parasites may be less likely to evade host immunity or they may fail

Fig 1. Schematic of the drivers and consequences of parasite hybridization.

doi:10.1371/journal.ppat.1005098.g001
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to effectively colonize the correct organ or body site. Through recombination and segrega-
tion, hybrids may also lose beneficial alleles that the parents had acquired previously, such
as those conferring drug resistance (see below). Hybrid parasite inferiority can also lead to
unusual pathogensis, which may hamper diagnosis, particularly when two very different dis-
ease phenotype parasites are introgressed (Box 1). As such, hybridization between divergent
parasite populations may both promote and alter pathogenesis, which has important impli-
cations on disease prevalence, pathology, and treatment.

6. Hybridization may have a wide range of effects on drug efficacy in parasites. On the one
hand, zoonotic hybrids may exhibit enhanced susceptibility to drugs if resistance alleles cir-
culating in the human host parasite population are swamped by introgression of drug-sus-
ceptible alleles from the animal host parasite population. Furthermore, if hybridization
between human and animal parasites increases the host range from human host specificity
to that of a large animal host range reservoir, this could act against the establishment and
spread of drug resistance [32]. Alternatively, hybridization could potentiate adaptive evolu-
tion within certain parasites in response to drug treatment (Box 1). One example for this is
Cryptococcus serotype hybrids that are resistant to an antifungal drug usually used to treat
infections with the individual parental serotypes [20]. More evidence for the adaptive intro-
gression of drug resistance genes from nonsusceptible strains or species comes from Hae-
monchus nematodes that gained resistance against the broad-spectrum drug ivermectin
through hybridization [72,73] and the introgression of anticoagulant rodent poison resis-
tance by hybridization between Old World mice [74].

Conclusions
Understanding and monitoring hybridization in animal and human parasites will be essential
for optimizing and evaluating control strategies across potential hybrid zones. Relatively simple
diagnostic procedures currently exist for detecting hybrids in some parasite groups (e.g., using
a multilocus approach with mitochondrial cytochrome c oxidase subunit 1 (COX-1)/internal
transcribed spacer (ITS) barcoding; [67]). However, the advancement of state-of-the-art geno-
mic technologies will be helpful for more fine-scale detection of hybridization in parasites, to
determine their evolutionary rates, and to identify patterns of cross transmission between host
species (i.e., sources of transmission of zoonotic parasites to humans). Since hybrid parasites
appear to be a particular problem in NTDs, there is a need to develop cheap, robust diagnostics
appropriate to use in the field.

The circumstances producing increased opportunity for hybridization are the same ones
that cause increased rates for disease distribution and transmission. Thus, the likelihood of par-
asite hybridization is increasing with the intensification of world trade of plants and animals,
human migration, land use, and drug administration (Fig 1). Interspecific hybridization and
introgression appear to be viable strategies for many parasites to maintain transmission, with
potentially major impacts on the evolution of virulence, infection persistence, drug resistance,
and host range, as well as on the clinical outcomes of disease. The combined effects of anthro-
pogenic distribution and increased hybridization opportunities could have hazardous and cata-
lytic effects on epidemiology, imposing further challenges and constraints for their effective
control. More empirical work on the differential transmission, infectivity, drug efficacy, patho-
genesis, and evolution of hybrid parasite populations is therefore urgently required to guide
policies on their monitoring and management.
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