40 research outputs found

    Crop Updates 2007 - Farming Systems

    Get PDF
    This session covers forty papers from different authors: 1. Quality Assurance and industry stewardship, David Jeffries, Better Farm IQ Manager, Cooperative Bulk Handling 2. Sothis: Trifolium dasyurum (Eastern Star clover), A. Loi, B.J. Nutt and C.K. Revell, Department of Agriculture and Food 3. Poor performing patches of the paddock – to ameliorate or live with low yield? Yvette Oliver1, Michael Robertson1, Bill Bowden2, Kit Leake3and Ashley Bonser3, CSIRO Sustainable Ecosystems1, Department of Food and Agriculture2, Kellerberrin Farmer3 4. What evidence is there that PA can pay? Michael Robertson, CSIRO Floreat, Ian Maling, SilverFox Solutions and Bindi Isbister, Department of Agriculture and Food 5.The journey is great, but does PA pay? Garren Knell, ConsultAg; Alison Slade, Department of Agriculture and Food, CFIG 6. 2007 Seasonal outlook, David Stephens and Michael Meuleners, Department of Agriculture and Food 7. Towards building farmer capacity to better manage climate risk, David Beard and Nicolyn Short, Department of Agriculture and Food 8. A NAR farmers view of his farming system in 2015, Rob Grima, Department of Agriculture and Food 9. Biofuels opportunities in Australia, Ingrid Richardson, Food and Agribusiness Research, Rabobank 10. The groundwater depth on the hydrological benefits of lucerne and the subsequent recharge values, Ruhi Ferdowsian1and Geoff Bee2; 1Department of Agriculture and Food, 2Landholder, Laurinya, Jerramungup 11. Subsoil constraints to crop production in the high rainfall zone of Western Australia, Daniel Evans1, Bob Gilkes1, Senthold Asseng2and Jim Dixon3; 1University of Western Australia, 2CSIRO Plant Industry, 3Department of Agriculture and Food 12. Prospects for lucerne in the WA wheatbelt, Michael Robertson, CSIRO Floreat, Felicity Byrne and Mike Ewing, CRC for Plant-Based Management of Dryland Salinity, Dennis van Gool, Department of Agriculture and Food 13. Nitrous oxide emissions from a cropped soil in the Western Australian grainbelt, Louise Barton1, Ralf Kiese2, David Gatter3, Klaus Butterbach-Bahl2, Renee Buck1, Christoph Hinz1and Daniel Murphy1,1School of Earth and Geographical Sciences, The University of Western Australia, 2Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany, 3The Department of Agriculture and Food 14. Managing seasonal risk is an important part of farm management but is highly complex and therefore needs a ‘horses for courses’ approach, Cameron Weeks, Planfarm / Mingenew-Irwin Group, Dr Michael Robertson, Dr Yvette Oliver, CSIRO Sustainable Ecosystems and Dr Meredith Fairbanks, Department of Agriculture and Food 15. Novel use application of clopyralid in lupins, John Peirce, and Brad Rayner Department of Agriculture and Food 16. Long season wheat on the South Coast – Feed and grain in a dry year – a 2006 case study, Sandy White, Department of Agriculture and Food 17. Wheat yield response to potassium and the residual value of PKS fertiliser drilled at different depths, Paul Damon1, Bill Bowden2, Qifu Ma1 and Zed Rengel1; Faculty of Natural and Agricultural Sciences, The University of Western Australia1, Department of Agriculture and Food2 18. Saltbush as a sponge for summer rain, Ed Barrett-Lennard and Meir Altman, Department of Agriculture and Food and CRC for Plant-based Management of Dryland Salinity 19. Building strong working relationships between grower groups and their industry partners, Tracey M. Gianatti, Grower Group Alliance 20. To graze or not to graze – the question of tactical grazing of cereal crops, Lindsay Bell and Michael Robertson, CSIRO Sustainable Ecosystems 21. Can legume pastures and sheep replace lupins? Ben Webb and Caroline Peek, Department of Agriculture and Food 22. EverGraze – livestock and perennial pasture performance during a drought year, Paul Sanford, Department of Agriculture and Food, and CRC for Plant-based Management of Dryland Salinity 23. Crop survival in challenging times, Paul Blackwell1, Glen Riethmuller1, Darshan Sharma1and Mike Collins21Department of Agriculture and Food, 2Okura Plantations, Kirikiri New Zealand 24. Soil health constraints to production potential – a precision guided project, Frank D’Emden, and David Hall, Department of Agriculture and Food 25. A review of pest and disease occurrence in 2006, Mangano, G.P. and Severtson, D.L., Department of Agriculture and Food 26. e-weed – an information resource on seasonal weed management issues, Vanessa Stewart and Julie Roche, Department of Agriculture and Food 27. Review of Pesticide Legislation and Policies in Western Australia, Peter Rutherford, BSc (Agric.), Pesticide Legislation Review, Office of the Chief Medical Adviser, WA Department of Health 28. Future wheat yields in the West Australian wheatbelt, Imma FarrĂ© and Ian Foster, Department of Agriculture and Food, Stephen Charles, CSIRO Land and Water 29. Organic matter in WA arable soils: What’s active and what’s not, Frances Hoyle, Department of Agriculture and Food, Australia and Daniel Murphy, UWA 30. Soil quality indicators in Western Australian farming systems, D.V. Murphy1, N. Milton1, M. Osman1, F.C. Hoyle2, L.K Abbott1, W.R. Cookson1and S. Darmawanto1; 1UWA, 2Department of Agriculture and Food 31. Impact of stubble on input efficiencies, Geoff Anderson, formerly employed by Department of Agriculture and Food 32. Mixed farming vs All crop – true profit, not just gross margins, Rob Sands and David McCarthy, FARMANCO Management Consultants, Western Australia 33. Evaluation of Local Farmer Group Network – group leaders’ surveys 2005 and 2006, Paul Carmody, Local Farmer Group Network, Network Coordinator, UWA 34. Seeding rate and nitrogen application and timing effects in wheat, J. Russell, Department of Agriculture and Food, J. Eyres, G. Fosbery and A. Roe, ConsultAg, Northam 35. Foliar fungicide application and disease control in barley, J. Russell, Department of Agriculture and Food, J. Eyres, G. Fosbery and A. Roe, ConsultAg, Northam 36. Brown manuring effects on a following wheat crop in the central wheatbelt, , J. Russell, Department of Agriculture and Food, J. Eyres, G. Fosbery and A. Roe, ConsultAg, Northam 37. Management of annual pastures in mixed farming systems – transition from a dry season, Dr Clinton Revell and Dr Phil Nichols; Department of Agriculture and Food 38. The value of new annual pastures in mixed farm businesses of the wheatbelt, Dr Clinton Revell1, Mr Andrew Bathgate2and Dr Phil Nichols1; 1Department of Agriculture and Food, 2Farming Systems Analysis Service, Albany 39. The influence of winter SOI and Indian Ocean SST on WA winter rainfall, Meredith Fairbanks and Ian Foster, Department of Agriculture and Food 40. Market outlook – Grains, Anne Wilkins, Market Analyst, Grains, Department of Agriculture and Foo

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2

    Get PDF
    Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involvedSupplementary Information: Supplementary Data 1; Supplementary Data 2; Reporting Summary.NHMRC; Women’s and Children’s Hospital Research Foundation; Muir Maxwell Trust; Epilepsy Society; The European Fund for Regional Development; The province of Friesland, Dystonia Medical Research Foundation; Stichting Wetenschapsfonds Dystonie Vereniging; Fonds Psychische Gezondheid; Phelps Stichting; The Italian Ministry of Health; Istituto Superiore di Sanità, Italy; Undiagnosed Disease Network Italy; The Fondation maladies rares, University Hospital Essen and UK Department of Health’s NIHR.https://www.nature.com/ncommspm2020Neurolog

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Summer Research Assignments Report

    No full text
    corecore