97 research outputs found

    Spherical Curvature Inhomogeneities in String Cosmology

    Full text link
    We study the evolution of non-linear spherically symmetric inhomogeneities in string cosmology. Friedmann solutions of different spatial curvature are matched to produce solutions which describe the evolution of non-linear density and curvature inhomogeneities. The evolution of bound and unbound inhomogeneities are studied. The problem of primordial black hole formation is discussed in the string cosmological context and the pattern of evolution is determined in the pre- and post-big-bang phases of evolution.Comment: 19 pages, Latex, 4 figure

    Quasi-Isotropization of the Inhomogeneous Mixmaster Universe Induced by an Inflationary Process

    Get PDF
    We derive a ``generic'' inhomogeneous ``bridge'' solution for a cosmological model in the presence of a real self-interacting scalar field. This solution connects a Kasner-like regime to an inflationary stage of evolution and therefore provides a dynamical mechanism for the quasi-isotropization of the universe. In the framework of a standard Arnowitt-Deser-Misner Hamiltonian formulation of the dynamics and by adopting Misner-Chitr\`e-like variables, we integrate the Einstein-Hamilton-Jacobi equation corresponding to a ``generic'' inhomogeneous cosmological model whose evolution is influenced by the coupling with a bosonic field, expected to be responsible for a spontaneous symmetry breaking configuration. The dependence of the detailed evolution of the universe on the initial conditions is then appropriately characterized.Comment: 17 pages, no figure, to appear on PR

    Can inflationary models of cosmic perturbations evade the secondary oscillation test?

    Get PDF
    We consider the consequences of an observed Cosmic Microwave Background (CMB) temperature anisotropy spectrum containing no secondary oscillations. While such a spectrum is generally considered to be a robust signature of active structure formation, we show that such a spectrum {\em can} be produced by (very unusual) inflationary models or other passive evolution models. However, we show that for all these passive models the characteristic oscillations would show up in other observable spectra. Our work shows that when CMB polarization and matter power spectra are taken into account secondary oscillations are indeed a signature of even these very exotic passive models. We construct a measure of the observability of secondary oscillations in a given experiment, and show that even with foregrounds both the MAP and \pk satellites should be able to distinguish between models with and without oscillations. Thus we conclude that inflationary and other passive models can {\em not} evade the secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements have been made to the discussion and new data has been included. The conclusions are unchagne

    Dynamics of Brane-World Cosmological Models

    Full text link
    We show that generically the initial singularity is isotropic in spatially homogeneous cosmological models in the brane-world scenario. We then argue that it is plausible that the initial singularity is isotropic in typical brane world cosmological models. Therefore, brane cosmology naturally gives rise to a set of initial data that provide the conditions for inflation to subsequently take place, thereby solving the initial conditions problem and leading to a self--consistent and viable cosmology.Comment: Final version. To appear in Physical Revie

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(1119−1143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Climate and sea level change: a perspective

    No full text
    Large changes in global climate from increasing concentrations of carbon dioxide and other greenhouse gases are distinct possibilities for the 21st century. By 2030, the world could be 1–2°C warmer and sea level 14–24 cm higher than today. Important agricultural regions in coastal lowlands and deltas could be threatened by flooding, erosion and salt intrusion. Small, low-lying island states are particularly at risk. </jats:p
    • 

    corecore