32 research outputs found

    Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients

    Get PDF
    Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.EEA BarilocheFil: Haider, Sylvia. German Centre for Integrative Biodiversity Research; AlemaniaFil: Haider, Sylvia. Martin Luther University. Institute of Biology. Geobotany and Botanical Garden; AlemaniaFil: Lembrechts, Jonas Johan. University of Antwerp. Centre of Excellence Plants and Ecosystems (PLECO); BélgicaFil: McDougall, Keith. Department of Planning, Industry and Environment; AustraliaFil: Pauchard, Aníbal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biológicas; ChileFil: Pauchard, Aníbal. Institute of Ecology and Biodiversity (IEB); ChileFil: Alexander, Jake M. Institute of Integrative Biology; SuizaFil: Barros, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales (IANIGLA); ArgentinaFil: Cavieres, Lohengrin A. Universidad de Concepción. Facultad de Ciencias Naturales y Oceanográficas. Departamento de Botánica; ChileFil: Cavieres, Lohengrin A. Institute of Ecology and Biodiversity (IEB); ChileFil: Rashid, Irfan. University of Kashmir. Department of Botany; IndiaFil: Rew, Lisa J. Montana State University. Department of Land Resource and Environmental Sciences; Estados UnidosFil: Aleksanyan, Alla. Institute of Botany aft. A.L. Takhtajyan NAS RA. Department of Geobotany and Plant Ecophysiology; ArmeniaFil: Aleksanyan, Alla. Armenian National Agrarian University. Chair of Biology and Biotechnologies; ArmeniaFil: Dimarco, Romina Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Dimarco, Romina Daniela. University of Houston. Department of Biology and Biochemistry; Estados UnidosFil: Seipel, Tim. Montana State University. Department of Land Resource and Environmental Sciences; Estados Unido

    Going up the Andes: patterns and drivers of non-native plant invasions across latitudinal and elevational gradients

    Get PDF
    The Andes mountain range in South America has a high level of endemism and is a major source of ecosystem services. The Andes is increasingly threatened by anthropogenic disturbances that have allowed the establishment of non-native plants, mainly in the lower elevation areas. However, synergies between climate change and anthropogenic pressure are promoting the spread of non-native plants to higher elevation areas. In this article, we evaluate and identify the main non-native plants invading Andean ecosystems, and assess their taxonomic families, growth forms and distribution patterns. Based on a systematic literature review, we identified the importance of climatic and anthropogenic factors as drivers of non-native species establishment in Andean ecosystems and the main impacts of non-native plants in the Andes. We then identified research gaps across each biogeographic region in the Andes. Finally, we highlight key elements to better tackle the problem of non-native plant invasions in Andean ecosystems, including the need for a systematic monitoring of invasion patterns and spread (e.g. MIREN protocol) and a common policy agenda across international borders for the prevention and management of non-native plants in this highly vulnerable region.Fil: Fuentes Lillo, Eduardo. Universidad de Concepción; Chile. Universiteit Antwerp; BélgicaFil: Lembrechts, Jonas J.. Universiteit Antwerp; BélgicaFil: Barros, Ana Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Aschero, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Bustamante, Ramiro O.. Universidad de Chile; ChileFil: Cavieres, Lohengrin A.. Universidad de Concepción; ChileFil: Clavel, Jan. Universiteit Antwerp; BélgicaFil: Herrera, Ileana. Universidad Espíritu Santo; EcuadorFil: Jiménez, Alejandra. Universidad de Concepción; ChileFil: Tecco, Paula Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Hulme, Philip E.. Lincoln University.; Nueva ZelandaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Rozzi, Ricardo. University of North Texas; Estados UnidosFil: García, Rafael A.. Universidad de Concepción; ChileFil: Simberloff, Daniel. University of Tennessee; Estados UnidosFil: Nijs, Ivan. Universiteit Antwerp; BélgicaFil: Pauchard, Aníbal. Universidad de Concepción; Chil

    Consumo, salud y ambiente: preferencias por verduras y frutas producidas sustentablemente

    Get PDF
    Esta comunicación aporta a la problemática del empleo de fitosanitarios en la producción frutihortícola desde la perspectiva de los consumidores, explorando sus percepciones y preferencias. Dicha problemática, es relevante en el Partido de General Pueyrredon (PGP) pues las regulaciones correspondientes vienen generando controversias y tensiones entre diversos sectores, a la par del surgimiento de producciones alternativas, desde el año 2000. El objetivo del trabajo es estudiar el consumo de verduras y frutas (VyF) producidas con prácticas cuidadosas de la salud y el ambiente -orgánicas, biodinámicas, obtenidas con la aplicación de controladores biológicos, agroecológicas- de la población urbana del PGP, siendo las preguntas de investigación: los consumidores, ¿perciben riesgos vinculados al consumo de VyF convencionales?, ¿dónde se abastecen de VyF producidas sustentablemente?, ¿qué atributos de estas últimas valoran? Se analizan descriptivamente datos de una encuesta, online y autoadministrada, relevada en noviembre-diciembre 2021. Participaron 480 consumidores, de 18 años y más, con decisión en la compra y/o en la preparación de alimentos de sus hogares, conformando una muestra con diferentes características demográficas y socioeconómicas. El fundamento conceptual es la Teoría Económica de la Demanda -"calidad percibida" y "valoración de los atributos"-. Entre los resultados obtenidos, se destacan que los "pesticidas" son percibidos más riesgosos que los "fertilizantes". A la mayor proporción de los encuestados, les preocupa que los agroquímicos contaminen, impactando negativamente en el ecosistema y su biodiversidad. De total de encuestados, el 58,33% consume VyF producidas sustentablemente con cierta frecuencia, prevaleciendo quienes lo hacen "ocasionalmente". Respecto al abastecimiento, adquieren importancia: "huerta propia o familiar", "negocios especializados", "ferias verdes" y "nodos de entrega de bolsones agroecológicos". Con relación a las razones que impulsan la preferencia por este tipo de VyF, se destacan atributos relacionados a: "contenido de agroquímicos", "cuidado de la salud" y "respeto por el ambiente", como también, el apoyo a "productores/comercializadores cercanos".Fil: Lacaze, María Victoria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina.Fil: Lupín, Beatriz. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina.Fil: Rodriguez, Julieta A. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina.Fil: Frávegas, S. Universidad Nacional de Mar del Plata. Escuela Superior de Medicina; Argentina.Fil: Etchegoyen, A. Universidad Nacional de Mar del Plata. Escuela Superior de Medicina; Argentina.Fil: Albani, C. Universidad Nacional de Mar del Plata. Escuela Superior de Medicina; Argentina.Fil: Cendón, María Laura. Unidad Integrada Balcarce. FCA-UNMDP/EEA Balcarce INTA; Argentina.Fil: Mujica, Guillermina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Gonzalez Barros, Ariel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina.Fil: Agullo, Agustina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina.Fil: Fernández, M. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina.Fil: Adamini, Ariana. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina

    Understanding climate change impacts on biome and plant distributions in the Andes: Challenges and opportunities

    Get PDF
    Aim: Climate change is expected to impact mountain biodiversity by shifting species ranges and the biomes they shape. The extent and regional variation in these impacts are still poorly understood, particularly in the highly biodiverse Andes. Regional syntheses of climate change impacts on vegetation are pivotal to identify and guide research priorities. Here we review current data, knowledge and uncertainties in past, present and future climate change impacts on vegetation in the Andes. Location: Andes. Taxon: Plants. Methods: We (i) conducted a literature review on Andean vegetation responses to past and contemporary climatic change, (ii) analysed future climate projections for different elevations and slope orientations at 19 Andean locations using an ensemble of model outputs from the Coupled Model Intercomparison Project 5, and (iii) calculated changes in the suitable climate envelope area of Andean biomes and compared these results to studies that used species distribution models. Results: Future climatic changes (2040–2070) are projected to be stronger at high-elevation areas in the tropical Andes (up to 4°C under RCP 8.5), while in the temperate Andes temperature increases are projected to be up to 2°C. Under this worst-case scenario, temperate deciduous forests and the grasslands/steppes from the Central and Southern Andes are predicted to show the greatest losses of suitable climatic space (30% and 17%–23%, respectively). The high vulnerability of these biomes contrasts with the low attention from researchers modelling Andean species distributions. Critical knowledge gaps include a lack of an Andean wide plant checklist, insufficient density of weather stations at high-elevation areas, a lack of high-resolution climatologies that accommodates the Andes' complex topography and climatic processes, insufficient data to model demographic and ecological processes, and low use of palaeo data for distribution modelling. Main conclusions: Climate change is likely to profoundly affect the extent and composition of Andean biomes. Temperate Andean biomes in particular are susceptible to substantial area contractions. There are, however, considerable challenges and uncertainties in modelling species and biome responses and a pressing need for a region-wide approach to address knowledge gaps and improve understanding and monitoring of climate change impacts in these globally important biomes.publishedVersio

    Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients

    Get PDF
    Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Anthropogenic factors overrule local abiotic variables in determining non-native plant invasions in mountains

    No full text
    The factors that determine patterns of non-native species richness and abundance are context dependent in both time and space. Global change has significantly boosted plant invasions in mountains, therefore, understanding which factors determine the invasion and at what scale they operate are fundamental for decision-making in the conservation of mountain ecosystems. Although much evidence has been gathered on the patterns of non-native species in mountain ecosystems, little is known about what specific abiotic, biotic, or anthropogenic factors are driven such patterns. Here, we assessed the importance of anthropogenic, biotic, and abiotic factors at two spatial scales as drivers of plant invasions along three roads in south-central Chile. We sampled non-native plant richness and abundance, and each of these explanatory factors, in-situ in 60 transects in disturbed areas and adjacent undisturbed vegetation. Low elevation areas were the most invaded, with patterns of richness and abundance driven mainly by anthropogenic factors, explaining between 20 and 50% of the variance for the three roads. Only for the abundance of non-native species along the road in the Malalcahuello National Reserve, biotic factors were more important (45% of the variance). At the regional scale, the abundance of non-native species was again explained best by anthropogenic factors (24% of the variance), yet non-native richness was driven most strongly by abiotic factors such as soil nitrogen content and pH (15% of the variance). Our results confirm the conclusions from experimental studies that anthropogenic factors override abiotic factors and are important drivers of non-native species at local and regional scales and that non-native plant invasion in mountains is currently not strongly limited by climate.Fil: Fuentes Lillo, Eduardo. Universidad de Concepción; Chile. Universidad de Chile; Chile. Universiteit Antwerp; Bélgica. Universidad Adventista de Chile; ChileFil: Lembrechts, Jonas J.. Universiteit Antwerp; BélgicaFil: Cavieres, Lohengrin A.. Universidad de Concepción; Chile. Instituto de Ecología y Biodiversidad; ChileFil: Jiménez, Alejandra. Universidad de Concepción; Chile. Instituto de Ecología y Biodiversidad; ChileFil: Haider, Sylvia. Martin Luther University Halle-Wittenberg; Alemania. German Centre for Integrative Biodiversity Research; AlemaniaFil: Barros, Ana Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Pauchard, Aníbal. Universidad de Concepción; Chile. Instituto de Ecología y Biodiversidad; Chil
    corecore