92 research outputs found
The three-dimensional randomly dilute Ising model: Monte Carlo results
We perform a high-statistics simulation of the three-dimensional randomly
dilute Ising model on cubic lattices with . We choose a
particular value of the density, x=0.8, for which the leading scaling
corrections are suppressed. We determine the critical exponents, obtaining , , , and ,
in agreement with previous numerical simulations. We also estimate numerically
the fixed-point values of the four-point zero-momentum couplings that are used
in field-theoretical fixed-dimension studies. Although these results somewhat
differ from those obtained using perturbative field theory, the
field-theoretical estimates of the critical exponents do not change
significantly if the Monte Carlo result for the fixed point is used. Finally,
we determine the six-point zero-momentum couplings, relevant for the
small-magnetization expansion of the equation of state, and the invariant
amplitude ratio that expresses the universality of the free-energy
density per correlation volume. We find .Comment: 34 pages, 7 figs, few correction
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Emerging role of insulin with incretin therapies for management of type 2 diabetes
Type 2 diabetes mellitus (T2DM) is a progressive disease warranting intensification of treatment, as beta-cell function declines over time. Current treatment algorithms recommend metformin as the first-line agent, while advocating the addition of either basal-bolus or premixed insulin as the final level of intervention. Incretin therapy, including incretin mimetics or enhancers, are the latest group of drugs available for treatment of T2DM. These agents act through the incretin axis, are currently recommended as add-on agents either as second-or third-line treatment, without concurrent use of insulin. Given the novel role of incretin therapy in terms of reducing postprandial hyperglycemia, and favorable effects on weight with reduced incidence of hypoglycemia, we explore alternative options for incretin therapy in T2DM management. Furthermore, as some evidence alludes to incretins potentially increasing betacell mass and altering disease progression, we propose introducing these agents earlier in the treatment algorithm. In addition, we suggest the concurrent use of incretins with insulin, given the favorable effects especially in relation to weight gain
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in MalargĂŒe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
The rapid atmospheric monitoring system of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction
Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory
From direct observations of the longitudinal development of ultra-high energy
air showers performed with the Pierre Auger Observatory, upper limits of 3.8%,
2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray
photons above 2, 3, 5 and 10 EeV (1 EeV = 10^18 eV) respectively. These are the
first experimental limits on ultra-high energy photons at energies below 10
EeV. The results complement previous constraints on top-down models from array
data and they reduce systematic uncertainties in the interpretation of shower
data in terms of primary flux, nuclear composition and proton-air
cross-section.Comment: 20 pages, 7 figures, 2 tables. Minor changes. Accepted by
Astroparticle Physic
The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers
produced by cosmic rays above 10^17 eV. During clear nights with a low
illuminated moon fraction, the UV fluorescence light produced by air showers is
recorded by optical telescopes at the Observatory. To correct the observations
for variations in atmospheric conditions, atmospheric monitoring is performed
at regular intervals ranging from several minutes (for cloud identification) to
several hours (for aerosol conditions) to several days (for vertical profiles
of temperature, pressure, and humidity). In 2009, the monitoring program was
upgraded to allow for additional targeted measurements of atmospheric
conditions shortly after the detection of air showers of special interest,
e.g., showers produced by very high-energy cosmic rays or showers with atypical
longitudinal profiles. The former events are of particular importance for the
determination of the energy scale of the Observatory, and the latter are
characteristic of unusual air shower physics or exotic primary particle types.
The purpose of targeted (or "rapid") monitoring is to improve the resolution of
the atmospheric measurements for such events. In this paper, we report on the
implementation of the rapid monitoring program and its current status. The
rapid monitoring data have been analyzed and applied to the reconstruction of
air showers of high interest, and indicate that the air fluorescence
measurements affected by clouds and aerosols are effectively corrected using
measurements from the regular atmospheric monitoring program. We find that the
rapid monitoring program has potential for supporting dedicated physics
analyses beyond the standard event reconstruction
- âŠ