218 research outputs found
First near-relativistic solar electron events observed by EPD onboard Solar Orbiter
Context. Solar Orbiter, launched in February 2020, started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au from the
Sun. The in situ instruments onboard, including the Energetic Particle Detector (EPD), operate continuously during the cruise phase enabling the
observation of solar energetic particles.
Aims. In situ measurements of the first near-relativistic solar electron events observed in July 2020 by EPD are analyzed and the solar origins and
the conditions for the interplanetary transport of these particles investigated.
Methods. Electron observations from keV energies to the near-relativistic range were combined with the detection of type III radio bursts and
extreme ultraviolet (EUV) observations from multiple spacecraft in order to identify the solar origin of the electron events. Electron anisotropies
and timing as well as the plasma and magnetic field environment were evaluated to characterize the interplanetary transport conditions.
Results. All electron events were clearly associated with type III radio bursts. EUV jets were also found in association with all of them except
one. A diversity of time profiles and pitch-angle distributions was observed. Different source locations and different magnetic connectivity and
transport conditions were likely involved. The July 11 event was also detected by Wind, separated 107 degrees in longitude from Solar Orbiter.
For the July 22 event, the Suprathermal Electron and Proton (STEP) sensor of EPD allowed for us to not only resolve multiple electron injections
at low energies, but it also provided an exceptionally high pitch-angle resolution of a very anisotropic beam. This, together with radio observations
of local Langmuir waves suggest a very good magnetic connection during the July 22 event. This scenario is challenged by a high-frequency
occultation of the type III radio burst and a nominally non-direct connection to the source; therefore, magnetic connectivity requires further
investigation
Solar energetic electron events measured by MESSENGER and Solar Orbiter. Peak intensity and energy spectrum radial dependences: statistical analysis
Context/Aims: We present a list of 61 solar energetic electron (SEE) events
measured by the MESSENGER mission and the radial dependences of the electron
peak intensity and the peak-intensity energy spectrum. The analysis comprises
the period from 2010 to 2015, when MESSENGER heliocentric distance varied
between 0.31 and 0.47 au. We also show the radial dependencies for a shorter
list of 12 SEE events measured in February and March 2022 by spacecraft near 1
au and by Solar Orbiter around its first close perihelion at 0.32 au.
Results: Due to the elevated background intensity level of the particle
instrument on board MESSENGER, the SEE events measured by this mission are
necessarily large and intense; most of them accompanied by a CME-driven shock,
being widespread in heliolongitude, and displaying relativistic (1 MeV)
electron intensity enhancements. The two main conclusions derived from the
analysis of the large SEE events measured by MESSENGER, which are generally
supported by Solar Orbiter's data results, are: (1) There is a wide variability
in the radial dependence of the electron peak intensity between 0.3 au
and 1 au, but the peak intensities of the energetic electrons decrease
with radial distance from the Sun in 27 out of 28 events. On average and within
the uncertainties, we find a radial dependence consistent with . (2)
The electron spectral index found in the energy range around 200 keV
(200) of the backward-scattered population near 0.3 au measured by
MESSENGER is harder in 19 out of 20 (15 out of 18) events by a median factor of
20% (10%) when comparing to the anti-sunward propagating beam
(backward-scattered population) near 1 au.Comment: 20 pages, 13 figure
The CORDEX Flagship Pilot Study in southeastern South America: a comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events
The aim of this work is to present preliminary results of the statistical and dynamical simulations carried out within the framework of the Flagship Pilot Study in southeastern South America (FPS-SESA) endorsed by the Coordinated Regional Climate Downscaling Experiments (CORDEX) program. The FPS-SESA initiative seeks to promote inter-institutional collaboration and further networking with focus on extreme rainfall events. The main scientific aim is to study multi-scale processes and interactions most conducive to extreme precipitation events through both statistical and dynamical downscaling techniques, including convection-permitting simulations. To this end, a targeted experiment was designed considering the season October 2009 to March 2010, a period with a record number of extreme precipitation events within SESA. Also, three individual extreme events within that season were chosen as case studies for analyzing specific regional processes and sensitivity to resolutions. Four dynamical and four statistical downscaling models (RCM and ESD respectively) from different institutions contributed to the experiment. In this work, an analysis of the capability of the set of the FPS-SESA downscaling methods in simulating daily precipitation during the selected warm season is presented together with an integrated assessment of multiple sources of observations and available CORDEX Regional Climate Model simulations. Comparisons among all simulations reveal that there is no single model that performs best in all aspects evaluated. The ability in reproducing the different features of daily precipitation depends on the model. However, the evaluation of the sequence of precipitation events, their intensity and timing suggests that FPS-SESA simulations based on both RCM and ESD yield promising results. Most models capture the extreme events selected, although with a considerable spread in accumulated values and the location of heavy precipitation.Thanks to CORDEX for endorsing the FPS-SESA. This work was supported by the University of Buenos Aires 2018- 20020170100117BA grant; JMG, MLB, SAS, RPR funding from the Spanish Research Council (CSIC) I-COOP+ Program “reference COOPB20374”. JMG, JF and AL-G acknowledge support from the Spanish R&D Program through projects MULTI-SDM (CGL2015-66583-R) and INSIGNIA (CGL2016-79210-R), co-funded by the European Regional Development Fund (ERDF/FEDER). AL-G acknowledges support from the Spanish R&D Program through the predoctoral contract BES-2016-078158. Universidad de Cantabria simulations have been carried out on the Altamira Supercomputer at the Instituto de Física de Cantabria (IFCA-CSIC), member of the Spanish Supercomputing Network. MB acknowledges support from the Simons Associateship of the Abdus Salam International Centre for Theoretical Physics. RH acknowledges support from the project LTT17007 funded by the Ministry of Education, Youth, and Sports of the Czech Republic
A multi-centre randomised controlled study of pre-IVF outpatient hysteroscopy in women with recurrent IVF implantation failure: Trial of Outpatient Hysteroscopy - [TROPHY] in IVF
<p>Abstract</p> <p>Background</p> <p>The success rate of IVF treatment is low. A recent systematic review and meta-analysis found that the outcome of IVF treatment could be improved in patients who have experienced recurrent implantation failure if an outpatient hysteroscopy (OH) is performed before starting the new treatment cycle. However, the trials were of variable quality, leading to a call for a large and high-quality randomised trial. This protocol describes a multi-centre randomised controlled trial to test the hypothesis that performing an OH prior to starting an IVF cycle improves the live birth rate of the subsequent IVF cycle in women who have experienced two to four failed IVF cycles.</p> <p>Methods and design</p> <p>Eligible and consenting women will be randomised to either OH or no OH using an internet based trial management programme that ensures allocation concealment and employs minimisation for important stratification variables including age, body mass index, basal follicle stimulating hormone level and number of previous failed IVF cycles. The primary outcome is live birth rate per IVF cycle started. Other outcomes include implantation, clinical pregnancy and miscarriage rates.</p> <p>The sample size for this study has been estimated as 758 participants with 379 participants in each arm. Interim analysis will be conducted by an independent Data Monitoring Committee (DMC), and final analysis will be by intention to treat. A favourable ethical opinion has been obtained (REC reference: 09/H0804/32).</p> <p>Trail Registration</p> <p>The trial has been assigned the following ISRCTN number: ISRCTN35859078</p
The unusual widespread solar energetic particle event on 2013 August 19 Solar origin and particle longitudinal distribution
Context: Late on 2013 August 19, STEREO-A, STEREO-B, MESSENGER, Mars Odyssey, and the L1 spacecraft, spanning a longitudinal range of 222 degrees in the ecliptic plane, observed an energetic particle flux increase. The widespread solar energetic particle (SEP) event was associated with a coronal mass ejection (CME) that came from a region located near the far-side central meridian from Earth's perspective. The CME erupted in two stages, and was accompanied by a late M-class flare observed as a post-eruptive arcade, persisting low-frequency (interplanetary) type II and groups of shock-accelerated type III radio bursts, all of them making this SEP event unusual.Aims: There are two main objectives of this study, disentangling the reasons for the different intensity-time profiles observed by the spacecraft, especially at MESSENGER and STEREO-A locations, longitudinally separated by only 15 degrees, and unravelling the single solar source related with the widespread SEP event.Methods: The analysis of in situ data, such as particle fluxes, anisotropies and timing, and plasma and magnetic field data, is compared with the remote-sensing observations. A spheroid model is applied for the CME-driven shock reconstruction and the ENLIL model is used to characterize the heliospheric conditions, including the evolution of the magnetic connectivity to the shock.Results: The solar source associated with the widespread SEP event is the shock driven by the CME, as the flare observed as a post-eruptive arcade is too late to explain the estimated particle onset. The different intensity-time profiles observed by STEREO-A, located at 0.97 au, and MESSENGER, at 0.33 au, can be interpreted as enhanced particle scattering beyond Mercury's orbit. The longitudinal extent of the shock does not explain by itself the wide spread of particles in the heliosphere. The particle increase observed at L1 may be attributed to cross-field diffusion transport, and this is also the case for STEREO-B, at least until the spacecraft is eventually magnetically connected to the shock when it reaches similar to 0.6 au.</p
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
- …