126 research outputs found

    The Strategic Use of Information Technology in the Insurance Industry: A Case Study of State Insurance Company- Kumasi, Ghana

    Get PDF
    The study aimed at finding out the strategic use of information technology in the State Insurance Company limited- Ghana, using Kumasi area office as the case study.Generally, the study focused attention on how managers and workers need to know about technology, the kind of information systems that support business needs, the benefits of adopting emerging technologies in insurance among others.Sixty (60) respondents were purposively selected which was guided by sampling procedure.  Quota sampling was also adopted.  Two (2) questionnaires were administered to the Area Manager and the deputy, ten (10) to all Heads of departments, thirty (30) to Senior Staff and eighteen (18) to Junior Staff.The findings revealed that most of the respondents rated the strategic use of IT in the company as playing a good role due to the fact that it has improved the workflow, respond quickly and timely on information requests and reduce cost of filling, storing and retrieving paper document, and unlike the traditional method, documents stored electronically are seldom lost or misfiled whilst at the same time it has reduced risk to a manageable extent.  There was also insufficient transaction through the internet between clients and the company. It was recommended that State Insurance Company Limited should add knowledge in IT as a prerequisite for recruiting staffs with the intention of reducing the operating cost of IT. Keywords: Information Technology (IT), Insurance, Risk, Kumasi, Internet, Recovery, Recruitin

    Engineering Characterisation of Aggregates from Some Selected Areas in Kumasi, Ghana

    Full text link
    The increase in engineering projects translates to an increase in demand for construction materials, for example, aggregates which are a major component in concrete works. There are many quarries in the Kumasi area which produce aggregates for use in construction works. However, there is no readily available information on the geological and geotechnical properties of these aggregates for use by engineers during the planning, design and construction of projects. This project therefore sought to characterise the aggregate from selected areas (close to some major quarries) in Kumasi based on their geological and engineering properties for construction purposes. Results of the study indicate that Aggregates from sampling locations KP and CS passed the FI test with those from CS being the only ones to pass for EI, making them the best aggregates in terms of Flakiness and Elongation Indices. The aggregates from all the sampling locations passed for the Specific Gravity and Water Absorption tests with CS aggregates giving the best results indicating high strength and good rate of water absorption. Aggregate from sampling location NM gave the best result for the Aggregate Impact Value test indicating high resistance to sudden impacts and shocks. With the Ten Percent Fines Value and the Aggregate Crushing Value Tests, CS yet again produced the aggregates with the best results. The aggregate gave a very high result even under the wet/soaked condition when all the others were giving very low results. Aggregates from this sampling locations can withstand loading gradual compression better than the rest. Finally, the KP aggregates gave the best results for the Los Angeles Abrasion Value which suggests such materials to be the hardest and toughest to resist crushing, degradation and disintegration. Aggregates from the CS, however gave the second best results. From the study, it was concluded that the most suitable location to obtain good quality aggregates is around CS as its aggregates gave the best results in almost all the tests

    Height-diameter allometry of tropical forest trees

    Get PDF
    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike\u27s information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account

    Extra-uterine (abdominal) full term foetus in a 15-day pregnant rabbit

    Full text link
    [EN] Background: While ectopic pregnancies account for 1-2% of all pregnancies, abdominal pregnancy is extremely rare, accounting for approximately 1% of ectopic pregnancies. Extrauterine abdominal pregnancy is defined as the implantation and development of an embryo in the peritoneal cavity. The present report is the first of an incidental case of abdominal pregnancy within four full-term foetus simultaneously with 2 weeks of physiological gestation in a healthy doe rabbit. Case presentation: The doe was born on November 3, 2014 and the first partum took place on May 18, 2015. The doe had previously delivered and weaned an average of 12.0 +/- 1.41 live kits at birth (no stillbirths were recorded) during 5 consecutive pregnancies. The last mating was on December 18, 2015 and the detection of pregnancy failure post breeding (by abdominal palpation) on December 31, 2015. Then, the doe was artificially inseminated on January 27, 2016, diagnosed pregnant on February 11, 2016 and subsequently euthanized to recover the foetus. A ventral midline incision revealed a reproductive tract with 12 implantation sites with 15 days old foetus and 4 term foetus in abdominal cavity. There were two foetus floating on either side of the abdominal cavity and two suspended near the greater curvature of the stomach. They were attached to internal organs by means of one or 2 thread-like blood vessels that linked them to the abdominal surfaces. Conclusions: In our opinion a systematic monitoring of rabbit breeding should be included to fully understand and enhance current knowledge of this phenomenon of abdominal pregnancy.This work was supported by Spanish Research Project AGL2014-53405-C2-1-P (Interministerial Commission on Science and Technology).Marco-Jiménez, F.; Garcia-Dominguez, X.; Valdes-Hernández, J.; Vicente Antón, JS. (2017). Extra-uterine (abdominal) full term foetus in a 15-day pregnant rabbit. BMC Veterinary Research. 13:1-4. https://doi.org/10.1186/s12917-017-1229-7S1413Petracci M, Bianchi M, Cavani C. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids. Nutrients. 2009;1:111–8.FAOSTAT (Food and Agriculture Organization of the United Nations, authors). Available online: http://faostat.fao.org/site/569/DesktopDefault.aspx?PageID=569#ancor . Accessed Sept 2012.Segura Gil P, Peris Palau B, Martínez Martínez J, Ortega Porcel J, Corpa Arenas JM. Abdominal pregnancies in farm rabbits. Theriogenology. 2004;62:642–51.Rosell JM, de la Fuente LF. Culling and mortality in breeding rabbits. Prev Vet Med. 2009;88:120–7.Tena-Betancourt E, Tena-Betancourt CA, Zúniga-Muñoz AM, Hernández-Godínez B, Ibáñez-Contreras A, Graullera-Rivera V. Multiple extrauterine pregnancy with early and near full-term mummified foetuses in a New Zealand white rabbit (Oryctolagus Cuniculus). J Am Assoc Lab Anim Sci. 2014;53:204–7.Sánchez JP, Theilgaard P, Mínguez C, Baselga M. Constitution and evaluation of a long-lived productive rabbit line. J Anim Sci. 2008;86:515–25.Savietto D, Friggens NC, Pascual JJ. Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genet Sel Evol. 2015;47:2.Viudes-de-Castro MP, Vicente JS. Effect of sperm count on the fertility and prolificity rates of meat rabbits. Anim Reprod Sci. 1997;46:313–9.Marco-Jiménez F, Garcia-Dominguez X, Jimenez-Trigos E, Vera-Donoso CD, Vicente JS. Vitrification of kidney precursors as a new source for organ transplantation. Cryobiology. 2015;70:278–82.Garcia-Dominguez X, Vera-Donoso CD, Jimenez-Trigos E, Vicente JS, Marco-Jimenez. First steps towards organ banks: vitrification of renal primordial. Cryo Letters. 2016;37:47–52.Arvidsson A. Extra-uterine pregnancy in a rabbit. Vet Rec. 1998;142:176.Glišić A, Radunović N, Atanacković J. Methotrexate and fallopian tubes in ectopic pregnancy. Acta veterinaria. 2006;56:375–82.Nwobodo EI. Abdominal pregnancy. A case report. Ann Afr Med. 2004;3:195–6.Nassali MN, Benti TM, Bandani-Ntsabele M, Musinguzi E. A case report of an asymptomatic late term abdominal pregnancy with a live birth at 41 weeks of gestation. BMC Res Notes. 2016;9:31.Baffoe P, Fofie C, Gandau BN. Term abdominal pregnancy with healthy new-born: a case report. Ghana Med J. 2011;45:81–3.Eleje GU, Adewae O, Osuagwu IK, Obianika CE. Post-date extra-uterine abdominal pregnancy in a rhesus negative Nullipara with successful outcome: a case report. J Women's Health. 2013;6:2.Hong CC, Armstrong ML. Ectopic pregnancy in 2 guinea-pigs. Lab Anim. 1978;12:243–4.Peters LJ. Abdominal pregnancy in a golden hamster (Mesocricetus Auratus). Lab Anim Sci. 1982;32:392–3.Xiccato G, Trocino A, Boiti C, Brecchia G. Reproductive rhythm and litter weaning age as they affect rabbit doe performance and body energy balance. Anim Sci. 2005;81:289–96.Fortun-Lamothe L, De Rochambeau H, Lebas F, Tudela F. Influence of the number of suckling young on reproductive performance in intensively reared rabbits does. In: Blasco A, editor. Proceedings of the 7th world rabbit congress; 2002. p. 125–32

    Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - How different are co-occurring savanna and forest formations?

    Get PDF
    Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna-forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence was found to be confined to a well-defined edaphic-climate envelope with soil and climate the key determinants of the relative location of forest and savanna stands. Moreover, when considered in conjunction with the appropriate water availability metrics, it emerges that soil exchangeable cations exert considerable control on woody canopy-cover extent as measured in our pan-continental (forest + savanna) data set. Taken together these observations do not lend support to the notion of alternate stable states mediated through fire feedbacks as the prime force shaping the distribution of the two dominant vegetation types of the tropical lands

    Height-diameter allometry of tropical forest trees

    Get PDF
    Copyright © 2011 European Geosciences Union. This is the published version available at http://www.biogeosciences.net/8/1081/2011/bg-8-1081-2011.html doi:10.5194/bg-8-1081-2011Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account

    Genome-wide linkage analysis of 1,233 prostate cancer pedigrees from the International Consortium for prostate cancer Genetics using novel sumLINK and sumLOD analyses

    Full text link
    BACKGROUND Prostate cancer (PC) is generally believed to have a strong inherited component, but the search for susceptibility genes has been hindered by the effects of genetic heterogeneity. The recently developed sumLINK and sumLOD statistics are powerful tools for linkage analysis in the presence of heterogeneity. METHODS We performed a secondary analysis of 1,233 PC pedigrees from the International Consortium for Prostate Cancer Genetics (ICPCG) using two novel statistics, the sumLINK and sumLOD. For both statistics, dominant and recessive genetic models were considered. False discovery rate (FDR) analysis was conducted to assess the effects of multiple testing. RESULTS Our analysis identified significant linkage evidence at chromosome 22q12, confirming previous findings by the initial conventional analyses of the same ICPCG data. Twelve other regions were identified with genome-wide suggestive evidence for linkage. Seven regions (1q23, 5q11, 5q35, 6p21, 8q12, 11q13, 20p11–q11) are near loci previously identified in the initial ICPCG pooled data analysis or the subset of aggressive PC pedigrees. Three other regions (1p12, 8p23, 19q13) confirm loci reported by others, and two (2p24, 6q27) are novel susceptibility loci. FDR testing indicates that over 70% of these results are likely true positive findings. Statistical recombinant mapping narrowed regions to an average of 9 cM. CONCLUSIONS Our results represent genomic regions with the greatest consistency of positive linkage evidence across a very large collection of high-risk PC pedigrees using new statistical tests that deal powerfully with heterogeneity. These regions are excellent candidates for further study to identify PC predisposition genes. Prostate 70: 735–744, 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71371/1/21106_ftp.pd

    Above-ground biomass and structure of 260 African tropical forests.

    Get PDF
    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes

    Pantropical variability in tree crown allometry

    Get PDF
    Aim: Tree crowns determine light interception, carbon and water exchange. Thus, understanding the factors causing tree crown allometry to vary at the tree and stand level matters greatly for the development of future vegetation modelling and for the calibration of remote sensing products. Nevertheless, we know little about large‐scale variation and determinants in tropical tree crown allometry. In this study, we explored the continental variation in scaling exponents of site‐specific crown allometry and assessed their relationships with environmental and stand‐level variables in the tropics. / Location: Global tropics. / Time period: Early 21st century. / Major taxa studied: Woody plants. / Methods: Using a dataset of 87,737 trees distributed among 245 forest and savanna sites across the tropics, we fitted site‐specific allometric relationships between crown dimensions (crown depth, diameter and volume) and stem diameter using power‐law models. Stand‐level and environmental drivers of crown allometric relationships were assessed at pantropical and continental scales. / Results: The scaling exponents of allometric relationships between stem diameter and crown dimensions were higher in savannas than in forests. We identified that continental crown models were better than pantropical crown models and that continental differences in crown allometric relationships were driven by both stand‐level (wood density) and environmental (precipitation, cation exchange capacity and soil texture) variables for both tropical biomes. For a given diameter, forest trees from Asia and savanna trees from Australia had smaller crown dimensions than trees in Africa and America, with crown volumes for some Asian forest trees being smaller than those of trees in African forests. / Main conclusions: Our results provide new insight into geographical variability, with large continental differences in tropical tree crown allometry that were driven by stand‐level and environmental variables. They have implications for the assessment of ecosystem function and for the monitoring of woody biomass by remote sensing techniques in the global tropics
    corecore