40 research outputs found

    Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra

    Full text link
    We define a theory of Galilean gravity in 2+1 dimensions with cosmological constant as a Chern-Simons gauge theory of the doubly-extended Newton-Hooke group, extending our previous study of classical and quantum gravity in 2+1 dimensions in the Galilean limit. We exhibit an r-matrix which is compatible with our Chern-Simons action (in a sense to be defined) and show that the associated bi-algebra structure of the Newton-Hooke Lie algebra is that of the classical double of the extended Heisenberg algebra. We deduce that, in the quantisation of the theory according to the combinatorial quantisation programme, much of the quantum theory is determined by the quantum double of the extended q-deformed Heisenberg algebra.Comment: 22 page

    Magnetothermodynamics of BPS baby skyrmions

    Get PDF
    The magnetothermodynamics of skyrmion type matter described by the gauged BPS baby Skyrme model at zero temperature is investigated. We prove that the BPS property of the model is preserved also for boundary conditions corresponding to an asymptotically constant magnetic field. The BPS bound and the corresponding BPS equations saturating the bound are found. Further, we show that one may introduce pressure in the gauged model by a redefinition of the superpotential. Interestingly, this is related to non-extremal type solutions in the so-called fake supersymmetry method. Finally, we compute the equation of state of magnetized BSP baby skyrmions inserted into an external constant magnetic field HH and under external pressure PP, i.e., V=V(P,H)V=V(P,H), where VV is the "volume" (area) occupied by the skyrmions. We show that the BPS baby skyrmions form a ferromagnetic medium.Comment: Latex, 39 pages, 14 figures. v2: New results and references added, physical interpretation partly change

    Baryonic Popcorn

    Full text link
    In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti-ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.Comment: v3, 80 pages, 18 figures, footnotes 5 and 7 added, version to appear in the JHE

    The embryo as moral work object: PGD/IVF staff views and experiences

    Get PDF
    Copyright @ 2008 the authors. This article is available in accordance with the Creative Commons Deed, Attribution 2.5, see http://creativecommons.org/licenses/by-nc-nd/2.5/deed.en_CA.We report on one aspect of a study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the field of preimplantation genetic diagnosis (PGD) for serious genetic disorders. The study produced an ethnography based on observation, interviews and ethics discussion groups with staff from two PGD/IVF Units in the UK. We focus here on staff perceptions of work with embryos that entails disposing of ‘affected’ or ‘spare’ embryos or using them for research. A variety of views were expressed on the ‘embryo question’ in contrast to polarised media debates. We argue that the prevailing policy acceptance of destroying affected embryos, and allowing research on embryos up to 14 days leaves some staff with rarely reported, ambivalent feelings. Staff views are under-researched in this area and we focus on how they may reconcile their personal moral views with the ethical framework in their field. Staff construct embryos in a variety of ways as ‘moral work objects’. This allows them to shift attention between micro-level and overarching institutional work goals, building on Casper's concept of ‘work objects’ and focusing on negotiation of the social order in a morally contested field.The Wellcome Trust Biomedical Ethics Programme, who funded the projects‘Facilitating choice, framing choice: the experience of staff working in pre-implantation genetic diagnosis’ (no: 074935), and ‘Ethical Frameworks for Embryo Donation:the views and practices of IVF/PGD staff’ (no: 081414)
    corecore