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1 Introduction

The Skyrme model [1–3] is considered one of the best candidates for an effective model

of low energy QCD. Using results from the large Nc expansion, it is known that the

proper degrees of freedom in this limit are mesons, while baryons emerge as collective

excitations, i.e., solitons called skyrmions, with an identification between baryon number

and topological charge. To get phenomenologically precise relations between solitons and

baryons (nuclei), one has to perform the standard semiclassical quantization of the spin

and isospin degrees of freedom, as well as include the electromagnetic interaction, which

obviously contributes to the masses of particles. Fortunately, although the Skyrme model

has not yet been derived from the underlying microscopic quantum field theory, its coupling

to the electromagnetic field is completely determined by the symmetries and anomalies of

QCD [4–6]. The resulting U(1) gauged Skyrme model is rather difficult to analyse, and the

electromagnetic properties of nucleons as well as atomic nuclei, although very important,

could not yet be extracted in the full nonlinear Skyrme-Maxwell description. The electric

part of the energy of the nuclei is typically approximated by the Coulomb energy [7],

where the back reaction of the Maxwell field on the Skyrme matter field is not taken into

account. Let us remark that some first numerical results for the Skyrme model minimally

coupled to the electromagnetic field (but without the anomalous or Wess-Zumino-Witten

term contribution) have been found in [8, 9]. Further, very recently some knotted soliton

solutions have been obtained for the S2 restriction of the minimally gauged Skyrme model

i.e., the gauged Faddeev-Skyrme-Niemi model, however within the toroidal ansatz which

limits the solutions to the charge Q = 1, 2 sectors [10].

As has been mentioned already, a precise derivation of the Skyrme model (or in fact

any effective low energy model) from QCD is one of the most urgent, however still unsolved,

tasks in modern theoretical physics. The lack of a systematic derivation means that the

precise form of the Skyrme type action is not known. The usual assumption (based on a

perturbative approach) restricts the model to three terms: the sigma model part (Dirichlet

energy), the Skyrme term (obligatory to avoid the Derrick arguments for the non-existence

of static solutions) and a potential (providing a mass for the perturbative pionic excita-

tions). It is, however, one of the main problems of the usual Skyrme model that it leads to

unphysical binding energies, which are in strong disagreement with the experimental data.

The underlying reason for this is that the usual Skyrme model is not a BPS theory, i.e., the

energies of skyrmions are not linearly related to their topological charges. As atomic nuclei

seem to be close to BPS objects (the masses are almost linear in the baryon charge with

a 1% deviation, at most), the corresponding effective model should be a (near) BPS one.

There exist two quite different realizations of this concept. The first proposal is based on

the observation that the inclusion of infinitely many vector mesons (Kaluza-Klein modes)

can bring the original Skyrme model towards the (4 + 0) Yang-Mills action [11–14]. In the

second proposal, the crucial observation is that within all Skyrme type Lagrangians (i.e.,

with no additional fields) there exists a special one with the BPS property. It has a rather

simple form and consists of two mutually balancing terms: a derivative part (the baryon

(topological) current squared) and a potential [15, 16]. Moreover, this model possesses the
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volume preserving diffeomorphism symmetry, which allows to interpret it as a field theo-

retical description of the liquid droplet model. In addition, the static energy-momentum

tensor of the model is the energy-momentum tensor of a perfect fluid, further strengthen-

ing the case for this interpretation. As a consequence, there are infinitely many solitonic

solutions saturating a topological bound, which leads to a linear energy - topological charge

relation. Therefore, the classical binding energies are zero. Further, finite binding energies

have been recently derived by taking into account the semiclassical quantization of the

spin-isospin degrees of freedom, the Coulomb interaction as well as the isospin breaking

potential. The obtained values are in very good agreement with the nuclear data and the

semi-empirical (Weizsäcker) formula, especially for higher nuclei [17–21]. This result allows

to consider the BPS Skyrme model as a serious candidate for a lowest order approximation

of the correct effective model of QCD at low energies, especially for the bulk quantities.

In addition to the binding energies, there are many properties of nuclei and nuclear

matter which should be understood within the framework of the (near) BPS Skyrme model.

It is another advantage of this model that, due to its generalized integrability and BPS

nature (solvability), many relevant questions can be answered in an analytical manner. One

of the most important ones is related to the thermodynamic and magnetic properties of

nuclei and nuclear matter. In particular, an understanding of how BPS skyrmions respond

to an external magnetic field and to pressure would provide us with the corresponding

equation of state, which is required for the analysis of nuclear matter in various conditions,

from heavy nuclei to neutron stars.

Unfortunately, even the BPS Skyrme model is quite complicated after the minimal

U(1) coupling. To overcome the computational difficulties and learn something about the

electromagnetic properties of BPS Skyrme type solitons, one can analyze lower-dimensional

analogs, as has been done successfully already in many occasions. In fact, there exists a

(2 + 1) dimensional version of the Skyrme model, usually referred to as the baby Skyrme

model, which supports solitonic solutions (baby skyrmions) [22–38] (for the gauged version

see [39, 40]). This field theory also possesses its BPS limit, whose Lagrangian consists of the

(2+1) dimensional version of the Skyrme term and a potential [41–43]. Moreover, there is

again a gauged version of this model, the so-called gauged BPS baby Skyrme model, which

has been analyzed recently in the case of an asymptotically vanishing magnetic field [44].

It is the aim of the present paper to further investigate baby skyrmions in the gauged

BPS baby Skyrme model from the perspective of the equation of state for BPS baby

skyrmion matter. In particular, we will focus on the issue of how the energy E and volume

V of the solitons change if they are placed in an asymptotically constant magnetic field H

and exposed to external pressure.

The paper is organized as follows. In section 2 we give a general overview of the gauged

BPS Skyrme model. We prove the existence of a topological bound for the regularized

energy in the case of a non-vanishing but constant asymptotic magnetic field. The BPS

equations saturating the bound are presented. In section 3 we solve the system for the

so-called old baby potential, both numerically and analytically in the weak coupling limit.

We find the equation of state and related quantities (magnetic compression, magnetization,

susceptibility) and prove a ferromagnetic behavior of the BPS baby skyrmion matter.

– 3 –
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Then, in section 4 we introduce pressure and derive the pressure-modified BPS equations.

Section 5 is devoted to the analysis of the equation of state with nonzero pressure and

external magnetic field, again for the old baby potential. In section 6 we present a toy

model for which the equation of state can be obtained analytically for any value of the

electromagnetic coupling constant. Finally, we discuss our results.

2 The BPS baby Skyrme model in a constant magnetic field

2.1 The gauged BPS baby Skyrme model

Here we briefly summarize the properties of the BPS Skyrme model coupled minimally

with the electromagnetic U(1) gauge field. The model is defined by the following Lagrange

density [44]

L = −λ
2

4

(
Dµ

~φ×Dν
~φ
)2
− µ2U

(
~n · ~φ

)
+

1

4g2
F 2
µν (2.1)

where ~φ is a three-component unit vector field, and the covariant derivative reads [39, 40]

Dµ
~φ ≡ ∂µ~φ+Aµ~n× ~φ. (2.2)

Without loss of generality we assume that the constant vector ~n = (0, 0, 1) and the potential

U is a function of the third component of ~φ. The pertinent field equations are

Dµ
~Kµ = −µ2~n× ~φ U ′ (2.3)

and the inhomogeneous Maxwell equation is

∂µF
µν = g2~n · ~Kν , (2.4)

where
~Kµ = λ2Dν

~φ
[
~φ ·
(
Dµ~φ×Dν~φ

)]
. (2.5)

The full energy functional is

E =
1

2

∫
d2x

(
λ2

2

(
D0

~φ×Di
~φ
)2

+
1

g2
E2
i + λ2

(
D1

~φ×D2
~φ
)2

+ 2µ2U +
1

g2
B2

)
. (2.6)

Further, we assume ~n = (0, 0, 1) and the standard axially symmetric static ansatz

~φ(r, φ) =




sin f(r) cosnφ

sin f(r) sinnφ

cos f(r)


 , A0 = Ar = 0, Aφ = na(r) (2.7)

which leads to an identically vanishing electric field and to the magnetic field B = na′(r)
r .

Note, that positive n (topological charge) corresponds to a negative magnetic field (a′ is

always negative as we will see below), while baby anti-skyrmions (negative n) would lead

to a positive magnetic field. Moreover, we are interested in topologically nontrivial matter

field (unit vector field) configurations, which requires the appropriate boundary conditions.
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n then provides the topological charge (winding number) of ~φ. The field equations can be

rewritten as

1

r2
f ′′(1+a)2 sin2 f+

f ′

r

[(
2a′− 1 + a

r

)
1 + a

r
sin2 f+

f ′

r
(1+a)2 sin f cos f

]

+
µ2

n2λ2
sin f U ′ = 0 (2.8)

a′′− a
′

r
= λ2g2(1+a) sin2 ff ′2

(2.9)

where now U = U(φ3) = U(cos f) and U ′ = Uφ3 . It is also convenient to introduce the

new variable

y =
r2

2
(2.10)

which allows to rewrite the equations as the following system of autonomous second order

equations

sin f

{
∂y
[
fy(1 + a)2 sin f

]
+

µ2

n2λ2
U ′
}

= 0 (2.11)

ayy = λ2g2(1 + a) sin2 ff2
y . (2.12)

Further, introducing a new target space variable h

φ3 = cos f ≡ 1− 2h ⇒ h =
1

2
(1− cos f), hy =

1

2
sin ffy (2.13)

this may be further simplified to

sin f

{
∂y
[
hy(1 + a)2

]
− µ2

4n2λ2
Uh

}
= 0 (2.14)

ayy = λ2g2(1 + a)4h2
y (2.15)

where now U = U(h) and Uh = −2U ′. It has been previously found that the model

preserves many properties of the original ungauged version [41–43].

First of all, there is a BPS bound which can be saturated by the corresponding BPS

configurations. The important assumption in the proof was the boundary condition for the

magnetic field that it asymptotically vanishes. Then, the energy is bounded from below by

E ≥ 4πE0λ
2|k| < W ′ >S2 (2.16)

where the inequality is saturated for the pertinent BPS solutions. Here k is the topological

charge (winding number) and < W ′ >S2 is the average value of the derivative of the super-

potential (see below) over the target space manifold. The resulting BPS baby skyrmions

may be of the compacton type with the magnetic field completely confined inside the com-

pact baby skyrmions. Further, the flux is not quantized (except in the large g limit). One

interesting conjecture, verified in many particular examples, was the absence of gauged
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BPS baby skyrmions for potentials with more than one vacuum. This strongly differs from

the ungauged case where such topological solitons do exist.

Secondly, the model is integrable in the sense of generalized integrability [45, 46] (no

conditions for the gauge field) which means that there are infinitely many conservation laws

(genuine conservation laws, which are not related to the gauge transformations). Moreover,

the static energy functional possesses the area preserving diffeomorphisms as its symmetry

group. Therefore, the moduli space of BPS solutions is infinite-dimensional. This also

means that our assumed ansatz does not restrict the form of the solutions. One may use

the base space area preserving diffeomorphisms to construct solutions with arbitrary (not

axially symmetrical) shapes.

2.2 Constant asymptotical magnetic field

The problem we want to solve next is how the external constant magnetic field H modifies

the BPS gauged baby skyrmions originally obtained in [44]. Obviously, the field equations

remain unchanged

∂y
[
hy(1 + a)2

]
− µ2

4n2λ2
Uh = 0 (2.17)

ayy = λ2g2(1 + a)4h2
y, (2.18)

but the boundary conditions are different. Now,

h(y = 0) = 1, a(y = 0) = 0 (2.19)

h(y = y0) = hy(y = y0) = 0, ay(y = y0) =
H

n
(2.20)

where the last condition leads to an asymptotically constant magnetic field B(y = y0) =

H = const.. Here, y0 can be finite (compactons — for example in the case of the old baby

Skyrme potential) or infinite. As the zero boundary conditions played a crucial role for the

proof of the existence of the BPS bound, as well as for its saturation by solutions of the

BPS equations, it is not obvious whether all these properties survive after the change of

the boundary conditions. Here we restrict ourselves to n > 0. The corresponding analysis

for negative topological charge is straightforward and requires the interchange of H to −H.

2.3 The BPS bound for constant asymptotical magnetic field

Here we would like to derive a BPS bound in the case of an asymptotically constant

magnetic field. This requires some important improvements in the original derivation.

Consider the following non-negative integral

0 ≤ 1

2
E0

∫
d2x

[
λ2(Q− w(φ3))2 +

1

g2
(B + b(φ3))2

]
= (2.21)

=
1

2
E0

∫
d2x

[
λ2Q2 + λ2w2 +

1

g2
B2 +

1

g2
b2 − 2λ2qw − 2λ2εijAi∂jφ3w +

2

g2
εij∂iAjb

]

(2.22)
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where b and w are (at the moment arbitrary) functions of the field variable φ3. Further,

Q = q + εijAi∂j

(
~n · ~φ

)
, q = ~φ · ∂1

~φ× ∂2
~φ. (2.23)

Now, let

b(φ3) = g2λ2W −H, W ≡
∫ φ3

φ3,v

dtw(t) (2.24)

where H is a constant equal to the asymptotic value of the magnetic field. Further, the

“superpotential” W is a function of the field variable which depends on the potential U (see

eq. (2.30)), as we shall see in a moment. Finally, φ3,v is the vacuum value of the Skyrme

field, i.e., U(φ3,v) = 0. Usually, we choose the vacuum at φ3,v = 1.

The last terms in (2.22) can be written as

E0

∫
d2x

[
λ2εij∂i(AjW )− H

g2
εij∂iAj

]
= −E0

∫
d2x

1

g2
BH (2.25)

as the first part vanishes at the compacton boundary where W (φ3,v) = 0 by definition.

Then

0 ≤ 1

2
E0

∫
d2x

[
λ2Q2 +

1

g2
B2 + λ2W ′2 + g2λ4W 2 − 2λ2WH

]
− E0λ

2

∫
d2xqW ′ (2.26)

+
1

2
E0

∫
d2x

1

g2
(H2 − 2HB). (2.27)

Hence,

1

2
E0

∫
d2x

[
λ2Q2 +

1

g2
B2 + 2µ2U

]
≥ E0λ

2

∫
d2xqW ′− 1

2
E0

∫
d2x

1

g2
(H2−2HB) (2.28)

i.e.,
1

2
E0

∫
d2x

[
λ2Q2 +

1

g2
(B −H)2 + 2µ2U

]
≥ E0λ

2

∫
d2xqW ′ (2.29)

where the superpotential equation relating the potential U and the superpotential W reads

λ2W ′2 + g2λ4W 2 − 2λ2WH = 2µ2U, (2.30)

which differs from the expression found in [44] for zero asymptotic magnetic field by the

term linear in W (and in H). By construction, W (φ3 = 1) = 0, which leads to W ′(φ3 =

1) = 0. Let us remark that this new superpotential equation can be brought to the form

of the original superpotential equation by the following redefinition

W̃ = W − 1

g2λ2
H, Ũ = U +

1

2g2µ2
H2. (2.31)

Then

λ2W̃ ′2 + g2λ4W̃ 2 = 2µ2Ũ . (2.32)

However, now the boundary conditions for the superpotential W̃ are changed.

– 7 –
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It is convenient to define a regularized energy where we subtract the infinite contribu-

tion from the asymptotically constant magnetic field

Ereg =
E0

2

∫
d2x

[
λ2
(
D1

~φ×D2
~φ
)2

+ 2µ2U +
1

g2
(B −H)2

]
. (2.33)

Then

Ereg ≥ E0λ
2

∫
d2xqW ′ ≡ 4π|k|E0λ

2 < W ′ >S2 . (2.34)

Obviously, the inequality is saturated if

Q = W ′ (2.35)

B = −g2λ2W +H (2.36)

which are the BPS equations in the case of a constant asymptotic magnetic field. For the

shifted superpotential we get the usual form of the BPS equations

Q = W̃ ′ (2.37)

B = −g2λ2W̃ . (2.38)

It remains to be shown that the solutions of these equations obey the full second order

equations of motion,

λ2εijDi

[(
Dj
~φ
)
Q
]

= −µ2U ′~n× ~φ (2.39)

∂iF
ij = g2λ2~n ·Dk~φ

(
~φ ·Dj~φ×Dk

~φ
)
. (2.40)

The Maxwell equation follows in the same way as in the H = 0 case since the derivative

of (2.36) does not depend on the value of H.

Further, from the superpotential equation we get

µ2U ′ = λ2W ′W ′′ + g2λ4WW ′ − λ2HW ′ (2.41)

and

∂kQ = W ′′∂k

(
~n · ~φ

)
. (2.42)

And then we follow the same derivation as in the H = 0 case. Namely, rewriting the first

equation of motion as

D2
~φ∂1Q−D1

~φ∂2Q+ ~n× ~φBQ = −λ−2µ2U ′~n× φ (2.43)

and using the above formulas we get

(
D2

~φ∂1

(
~n · ~φ

)
−D1

~φ∂2

(
~n · ~φ

))
W ′′ = ~n×~φ

(
g2λ2WW ′−HW ′−W ′W ′′−g2λ2WW ′+W ′H

)

(2.44)

i.e.,

D2
~φ∂1

(
~n · ~φ

)
−D1

~φ∂2

(
~n · ~φ

)
= −~n× ~φW ′ (2.45)
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which is the same as for H = 0. The remaining steps: using the covariant derivative

definition, use Q = W ′ and the definition of Q, do not depend on H. That ends the proof.

Finally, let us observe that in the axially symmetric ansatz the BPS equations read

2nhy(1 + a) = −1

2
Wh (2.46)

nay = −g2λ2W +H (2.47)

or for the shifted superpotential

2nhy(1 + a) = −1

2
W̃h (2.48)

nay = −g2λ2W̃ . (2.49)

2.4 The regularized flux

Another important quantity is the flux of the magnetic field

Φ =

∫
rdrdφB. (2.50)

As the magnetic field extends to infinity the flux will also take an infinite value. However,

for compactons, which is the case discussed in the paper, the magnetic field outside the

solitons is exactly equal to the external field. Due to that we are rather interested in the

value of the flux integrated over the area of the solitons, which is equivalent (up to an

additive constant) to the following definition of the regularized flux

Φreg =

∫
rdrdφ(B −H) = 2π

∫ r0

0
rdr(B −H) (2.51)

where the axially symmetric configuration has been assumed. Then, using the definition

of the magnetic field and the behavior at the boundary we find

Φreg = 2πn

∫
dy

(
ay −

H

n

)
= 2πn

∫
dy∂y

(
a− Hy

n

)
= 2πn

(
a(y0)− Hy0

n

)
. (2.52)

It is also possible to prove that this value depends only on the model (coupling constants

and the form of the potential) but not on the local behavior of a particular solution.

Dividing one BPS equation by the other we find

ay
1 + a

=
4
(
g2λ2W −H

)
hy

Wh
(2.53)

i.e.,

∂y ln(1 + a) = ∂yF (2.54)

where

Fh =
4
(
g2λ2W −H

)

Wh
⇒ F (h) =

∫ h

0
dh′

4
(
g2λ2W (h′)−H

)

Wh′(h′)
. (2.55)

Then,

lnC(1 + a) = F (h(y)) (2.56)

– 9 –
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where the constant C can be computed from the boundary values of the fields at y = 0,

C = eF (h=1). (2.57)

Therefore, we get

a(y) = eF (y)−F (1) − 1 (2.58)

and, specifically at y = y0 where, by definition, F (h = 0) ≡ 0,

a(y0) = −1 + e−F (1) = −1 + e−g
2λ2α+Hβ (2.59)

where the constants α, β depend on the model (potential),

α =

∫ 1

0
dh

4W (h)

Wh(h)
, β =

∫ 1

0

dh

Wh(h)
. (2.60)

It is clear that a(y0) → −1 once g → ∞ or H → −∞. This behavior is confirmed by

numerical results.

For the regularized flux we then get

Φreg = 2πn
(
−1 + e−F (1)

)
−HV (2.61)

where V = 2πy0 is the “volume” (area) of the compacton. We use the word “volume”

and the letter V to maintain close contact with the standard thermodynamic notation. We

already showed that the first part, 2πn(−1+exp(−F (1)), may be expressed as a target space

integral and, therefore, does not depend on the specific solution h(y), a(y). In other words,

it is one and the same thermodynamic function for all equilibrium configurations (BPS

solutions). In a next step, let us demonstrate that also the “volume” V (and, consequently,

the full regularized flux) is a thermodynamic function, i.e., a given function of H for all

BPS solutions. The BPS equation (2.46) may be re-expressed like

dy = −4n
1 + a

Wh
dh = −4n

eF (h)−F (1)

Wh
dh (2.62)

where we used (2.58) in the second step. Integrating both sides over their respective ranges

and taking into account that h and y are oppositely oriented, i.e., h(0) = 1 and h(y0) = 0,

leads to

V (H) = 2πy0 = 8πne−F (1)

∫ 1

0
dh
eF (h)

Wh
(2.63)

and to the regularized flux

Φreg = 2πn

(
−1 + e−F (1) − 4He−F (1)

∫ 1

0
dh
eF (h)

Wh

)
(2.64)

which, indeed, is a thermodynamic function, as announced.
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2.5 The magnetization

The thermodynamic magnetization M is defined as minus the change of the thermodynamic

energy of a sample (in our case, the skyrmion) under a variation of the external magnetic

field. Here, the electromagnetic part of the thermodynamic energy must be calculated from

the difference of the electromagnetic fields with and without the sample, which precisely

corresponds to our definition of the regularized energy, i.e.,

M = −∂Ereg

∂H
. (2.65)

We use the BPS bound (2.34) for the energy and express the average value of W ′ over the

target space S2 like

〈W ′〉 ≡ 〈Wφ3〉 =
1

4π

∫ 2π

0
dϕ

∫
df sin fWφ3 =

1

2

∫ 1

−1
dφ3Wφ3 =

1

2

∫ 1

0
dhWh =

1

2
W (h = 1)

(2.66)

where we treated W as a function of h = (1/2)(1 − φ3) in the last two terms, which we

shall continue to do, i.e., W (1) ≡W (h = 1) in what follows. The magnetization then is

M = −2πnλ2∂W (1)

∂H
(2.67)

and, obviously, is a thermodynamic function (i.e., the same function of H for all equilibrium

configurations).

In standard thermodynamics there is a simple relation between the magnetization and

the difference between full and external magnetic flux in the sample. In our conventions,

this relation reads

M =
1

g2

∫
(B −H) ≡ 1

g2
Φreg. (2.68)

We shall see that this relation continues to hold in our model, although the proof is not

trivial and makes use of the BPS nature of the model, specifically of the superpotential

equation. Using the variable h instead of φ3, the superpotential equation may be re-

expressed like

1

4
W 2
h + g̃2W 2 − 2WH = 2µ̃2U(h) , g̃ = λg , µ̃ =

µ

λ
. (2.69)

To express the first derivative ∂HW (1), it is useful to introduce a first order (infinitesimal)

shift about a given value H0,

H = H0 + δ , W = W (0) +W (1)δ + O(δ2) (2.70)

then the magnetization at H = H0 is

M(H0) = −2πnλ2W (1)(1) (2.71)

and the thermodynamic relation (2.68) becomes

− 2πnλ2W (1)(1) = Φreg(H0). (2.72)

– 11 –
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The superpotential equation at zeroth order in δ is

1

4

(
W

(0)
h

)2
+ g̃2

(
W (0)

)2
− 2W (0)H0 = 2µ̃2U(h) (2.73)

and serves to determine W (0) for a given H0, potential U and given coupling constants.

The first order superpotential equation is (remember that U does not depend on H)

1

2
W

(0)
h W

(1)
h + 2g̃2W (0)W (1) − 2H0W

(1) − 2W (0) = 0 (2.74)

or
1

4

W
(0)
h

g̃2W (0) −H0
W

(1)
h +W (1) =

W (0)

g̃2W (0) −H0
(2.75)

and serves to determine W (1)(h) for a given W (0)(h). Indeed, introducing a new variable

k = F (h) = 4

∫ h

0
dh′

g̃2W (0)(h′)−H0

W
(0)
h′

(2.76)

the above equation becomes

W
(1)
k +W (1) =

W (0)

g̃2W (0) −H0
(2.77)

and may be easily solved via the method of the variation of the integration constant,

leading to

W (1)(k) = c(k)e−k , c(k) =

∫ k

0
dk′ek

′ W (0)

g̃2W (0) −H0
(2.78)

or, in terms of the variable h

W (1)(h) = 4e−F (h)

∫ h

0
dh′

W (0)

W
(0)
h′

eF (h′). (2.79)

In particular, for W (1)(1) we find (remember that W (1) ≡W (h = 1))

W (1)(1) = 4e−F (1)

∫ 1

0
dh
W (0)

W
(0)
h

eF (h)

=
e−F (1)

g̃2

(∫ 1

0
dh

4
(
g̃2W (0) −H0

)

W
(0)
h

eF (h) + 4H0

∫ 1

0
dh
eF (h)

W
(0)
h

)

=
e−F (1)

g̃2

(
−1 + eF (1) + 4H0

∫ 1

0
dh
eF (h)

W
(0)
h

)
(2.80)

where

deF (h) =
4
(
g̃2W (0) −H0

)

W
(0)
h

eF (h)dh (2.81)

and F (0) = 0 was used. From this last result, the thermodynamic relation (2.72) follows

immediately.
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3 Constant magnetic field and the old baby potential

3.1 Numerical computations

The system introduced above significantly simplifies in the case of the old baby Skyrme

potential

U = 1− φ3 ⇒ U(h) = 2h. (3.1)

Then the field equations can be integrated to

hy(1 + a)2 =
µ2

2n2λ2
(y − y0) (3.2)

and

(1 + a)3ayy =
g2µ4

n4λ2
(y − y0)2. (3.3)

The corresponding energy integral is

E = 2π

∫
dy

(
2λ2n2(1 + a)2h2

y + 2µ2h+
1

2g2
n2a2

y

)
. (3.4)

Effectively, the problem depends on two coupling constants. The dependence on the topo-

logical charge can be included into a redefinition of the base space coordinate while a

particular value of λ just fixes the energy scale. So, let us choose n = 1, λ = 1 and treat µ

and g as parameters (now dimensionless) defining different theories. Moreover, the external

magnetic field H is another free parameter.

As in the H = 0 case we expand the functions at the boundary

h =
µ2

4n2λ2(1 + b0)2
(y − y0)2 + . . . (3.5)

a = b0 +
H

n
(y − y0) +

g2µ4

12n4λ2(1 + b0)3
(y − y0)4 + . . . (3.6)

In the numerical computations we assumed µ2 = 0.1 (the results for µ2 = 1 and µ2 = 10

are very similar) and then considered a few different values of g and scanned for a wide

range of H.

Examples of gauged BPS baby skyrmions are plotted in figure 1 for different values of

the external magnetic field. The electromagnetic coupling constant is g = 0.1. At this point

it is useful to remember that the gauged baby BPS skyrmions without external magnetic

field have a magnetic field which is everywhere negative (for positive baryon number n)

and a negative magnetization proportional to the baryon number [44]. In other words,

these gauged skyrmions show a ferromagnetic behaviour. For a negative external field we

therefore expect that the negative magnetic field will become stronger (i.e., more negative).

As the gauge potential for negative magnetic field is restricted to the interval a(y) ∈ (−1, 0],

as follows easily from eq. (2.58), the stronger (more negative) magnetic field is achieved by

shrinking the size of the skyrmion. Concretely, for strong negative H � 0 we approach a

singular configuration: the skyrmion profile gets flatter and flatter inside (approximately

constant charge density) with a rapid but smooth approach to the vacuum at the boundary
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Figure 1. Numerical results for gauged baby skyrmions for the old potential. We plot the profile

function h and the magnetic potential a for the external magnetic field taking the values H =

0.1236,−1.167 · 10−6,−0.1952,−0.9987 and g = 0.1.

whereas a has a more and more linear dependence on y tending to a∞ = −1. In the limit

where H → −∞ the size of the compacton goes to 0 as y0 ∼ 1
|H| and the solutions approach

the step function and a linear function for h and a, respectively. The approach to the

limiting step function solution is faster for higher values of the electromagnetic coupling

constant g.

For high positive values of H, the magnetic field changes sign everywhere, and the

resulting gauge potential a is a simple monotonously increasing function from 0 to a∞ > 0.

For a positive but sufficiently small H, however, the phenomenon of magnetic flux inversion

occurs. That is to say, the magnetic field B(y) is negative in a ball 0 ≤ y < y∗ (because the

magnetic field without external field is more negative in the core region), becomes zero at

y∗ and positive in the shell y∗ < y ≤ y0 (because B(y0) = H must hold at the compacton

boundary). The corresponding gauge potential is, therefore, a decreasing function in the

ball close to the center but an increasing function in the shell. Finally, the value of the

gauge potential at the compacton boundary a(y0) determines the total magnetic flux inside

the compacton. Specifically, the total magnetic flux inside the compacton may become zero,

in contrast to the regularized flux or magnetization, which is always negative for positive

baryon number. The baby skyrmion profile h is a simple monotonously decreasing function

for all values of H. We show an example of the magnetic flux inversion in figure 2.

In figure 3 and figure 4 we show how the compacton size and the compacton energy,

respectively, depend on the external magnetic field.
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Figure 2. The baby skyrmion profile h and the magnetic potential a for H = 0.002378 and g = 0.1.

The magnetic flux inversion (sign change of ay) is clearly visible.
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Figure 3. Dependence of the compacton “volume” (more precisely: area) on the constant asymp-

totic magnetic field H for different values of the coupling constant g. The (analytical) non-back

reaction approximation is denoted by a dashed line.

3.2 Non-dynamical constant magnetic field

Although the system can be reduced to BPS first order equations it is still too complicated

to find analytical solutions. However, one may consider a simplified case where the magnetic

field is treated as an external field B = H = const.. That is to say, we do not consider the

back reaction of the system on the magnetic field in the vicinity of the BPS baby skyrmion.

It has been found, after comparison with the numerical results, that this approximation

works quite well and provides an exact description in the small electrodynamical coupling

constant limit g → 0.
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Figure 4. Dependence of the total energy inside the compacton domain (left figure) and of the

regularized energy (right figure) on the constant asymptotic magnetic field H, for different values

of the coupling constant g. The (analytical) non-back reaction approximation is denoted by a

dashed line.

3.2.1 Equation of state V = V (H) and E = E(H)

As the magnetic field is only a non-dynamical external field, we may reduce the system to

one equation where the magnetic field plays the role of a “deformed metric” in which baby

skyrmions exist. (In fact, curved metrics may arise in some gravitational context [47, 48],

which points to another possible application of the BPS skyrmions.) Hence,

sin f

{
∂y
[
hy(1 + a)2

]
− µ2

4n2λ2
Uh

}
= 0 (3.7)

where

B ≡ H = const ⇒ a =
Hr2

2n
⇒ a =

H

n
y ≡ βy. (3.8)

The resulting equation can be analytically solved for the old baby potential

U = 2h. (3.9)

Then,

∂y
[
hy(1 + a)2

]
=

µ2

2n2λ2
⇒ hy(1 + βy)2 =

µ2

2n2λ2
(y − y0) (3.10)

Hence,

h(y) =
µ2

2n2λ2

∫
dy

y − y0

(1 + βy)2
+ const. (3.11)

with the boundary conditions

h(0) = 1, h(y0) = 0, h′(y0) = 0 (3.12)

where y0 can be finite (compacton) or infinite (usual soliton). However, infinite y0 is

excluded by the asymptotic behavior of equation (3.10). Indeed, for large y we get that

h ∼ ln y which contradicts the boundary value for h at infinity. The final solution is

h(y) =

{
µ2

2n2λ2β2

[
1+βy0
1+βy − ln

(
1+βy0
1+βy

)
− 1
]
y ≤ y0

0 y ≥ y0

(3.13)
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where

βy0 − ln(1 + βy0) =
2n2λ2β2

µ2
(3.14)

is an equation fixing the size of the compacton. It provides an approximate but analytical

relation between the two-dimensional “volume” V = 2πy0 and the external magnetic field

HV

2πn
− ln

(
1 +

HV

2πn

)
=

2λ2H2

µ2
. (3.15)

The validity of this approximation is restricted by the following condition

g2µ4

n4λ2
y2

0 � 1 (3.16)

which follows from the equation of motion for the magnetic field when the approximated

(non-back reaction) solution is inserted. For small magnetic field βy0 � 1 we may use

ln(1 + x) = x− 1

2
x2 + . . . (3.17)

and then

y0 =
2nλ

µ
⇒ V [H = 0] =

4πλn

µ
(3.18)

which agrees with the size of the non-gauged case. For large magnetic field we can use

βy0 � ln(1 + βy0). Thus,

y0 =
2n2λ2

µ2
β ⇒ V =

4πλ2n

µ2
H (3.19)

i.e., the size of the solution grows linearly with the magnetic field.

Next, we consider the energy

E = 2π

∫ y0

0
dy 2λ2n2(1 + a)2h2

y + 2µ2h (3.20)

= 2π
µ4

n2λ2

∫ y0

0
dy

1

2

(y − y0)2

(1 + βy)2
+

1

β2

[
1 + βy0

1 + βy
− ln

(
1 + βy0

1 + βy

)
− 1

]
(3.21)

= 4π
µ2

β

[
µ2

4λ2n2
y2

0 − 1

]
≡ 4π

µ2

β

[
y2

0

2C
− 1

]
(3.22)

where C = 2n2λ2

µ2
. Hence, we find the relation between the total energy and the external

magnetic field, however, in an implicit way

E =
4πµ2n

H

[(
µV

4πλn

)2

− 1

]
. (3.23)

Equation (3.15) and the last expression are the main results of this section since they

provide analytical formulas for the V = V (H) and E = E(H) relations in the BPS gauged

baby model.
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Figure 5. The size of the skyrmions and its derivative as a function of g at H = 0.

3.2.2 Magnetic compressibility

For small magnetic field y2
0 → 2C and the last expression can be computed using the

L’Hospital formula

E[H = 0] = lim
β→0

4π
µ2

β

[
y2

0

2C
− 1

]
= 4πµ2 lim

β→0

2y0y
′
0

2C
. (3.24)

In order to find y′0 at vanishing β we differentiate (3.14)

y0

β
− ln(1 + βy0)

β2
= C. (3.25)

Then,

y2
0 + βy0y

′
0 = 2C(1 + βy0). (3.26)

Now, assuming y0 =
√

2C +Aβ we find that A = 2
3C i.e.,

y′0(β = 0) =
2

3
C. (3.27)

We plot the numerical results for y0(H = 0) and y′0(H = 0) for general coupling g (i.e.,

with the backreaction taken into account) in figure 5.

Then the energy is

E[H = 0] =
16π

3
µλn (3.28)

which agrees with the non-gauged case. On the other hand, for large value of the magnetic

field we find that

E = 4πλ2nH. (3.29)

Another consequence of (3.27) is that the magnetic compressibility is finite

κ0
mag ≡

1

V

∂V

∂H

∣∣∣∣
H=0

=
2λ

3µ
(3.30)

It is quite interesting that the magnetic compressibility very weakly depends on the elec-

tromagnetic coupling constant for a wide range of g. In fact, κmag ≈ κmag(g = 0) = 2.1082
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Figure 6. The magnetic compressibility (left figure) and magnetization density (right figure) at

H = 0 as a function of g. The magnetic compressibility is almost independent of g for small g.

for g ∈ [0, 0.7], see figure 6. Hence, the non-backreaction approximation works especially

well for the magnetic compressibility.

Moreover, we can also obtain the magnetic compressibility for large magnetic field.

Now,

κmag(H) ∼ 1

H
. (3.31)

Hence, asymptotically the magnetic compressibility tends to zero.

3.2.3 Magnetization and ferromagnetic medium

Another interesting quantity is the magnetization at vanishing external field, M0 =

− ∂E
∂H

∣∣
H=0

. Then,

∂E

∂H

∣∣∣∣
H=0

=
1

n

∂E

∂β

∣∣∣∣
β=0

=
4πµ2

nβ2

(
1− y2

0

2C
+

2y0y
′
0β

2C

)∣∣∣∣
β=0

. (3.32)

Hence,

∂E

∂H

∣∣∣∣
H=0

=
4πµ2

n2β

(
−2y0y

′
0

2C
+

2y0y
′
0

2C
+

2y′20 β

2C
+

2y0y
′′
0β

2C

)∣∣∣∣
β=0

=
4πµ2

2C

(
y′20 + y0y

′′
0

)∣∣∣∣
β=0

(3.33)

Again, from (3.14) we find that

y′′0(β = 0) = (2C)3/2 1

18
(3.34)

and
∂E

∂H

∣∣∣∣
H=0

= 4π
2

3
λ2n. (3.35)

Then, we can find the magnetization in the vicinity of the vanishing magnetic field

M0 = − ∂E

∂H

∣∣∣∣
H=0

= −4π
2

3
λ2n (3.36)
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and the magnetization density

m0 = − 1

V

∂E

∂H

∣∣∣∣
H=0

= −2

3
λµ (3.37)

which is negative for the baby skyrmions (remember n > 0). For general coupling g (with

the back reaction included) we plot the magnetization density in figure 6.

Due to the nonlinearity of the model, the magnetization is not H-independent. In fact,

for a big enough value of the magnetic field we get

M(H) = −4πλ2n (3.38)

and therefore the magnetization density goes to 0 as 1/H. These exact results find a perfect

agreement with the numerical computation.

Another quantity relevant for the study of magnetic properties of a medium is the

magnetic susceptibility defined as

χ =
∂M

∂H
= − ∂

2E

∂H2
(3.39)

Then using the equation of state for the energy we find that at H = 0

χ0 = − 1

n2

∂2E

∂β2

∣∣∣∣
β=0

= −4πµ2

n2

[
2

β3

(
y2

0

2C
− 1

)
− 2y0y

′
0

Cβ2
+
y′20
Cβ

+
y0y
′′
0

Cβ

]

β=0

(3.40)

= −4πµ2

3C

[
3y′0y

′′
0 + y0y

′′′
0

]
β=0

(3.41)

Now, from the volume-magnetic field equation of state we get that

y′′′0 (β = 0) = −(2C)2

45
(3.42)

Then the final result for the magnetic susceptibility at H = 0 is

χ0 = −32π

45

λ3

µ
n (3.43)

and its density

χ0
d = − 1

V

∂2E

∂H2

∣∣∣∣
β=0

= − 8

45
λ2 (3.44)

which are negative for any values of the parameters of the model. The exact analytical

result is confirmed by numerical computations. For higher values of the magnetic field

the susceptibility tends to zero. We summarize our exact results for the thermodynamics

variables at H = 0 in Table 1.

Let us now interpret the results obtained above. First of all, as we know from [44], the

gauged BPS baby skyrmions always possess a non-zero flux of the magnetic field — even

without external magnetic field, i.e., for the boundary condition H = 0. In other words,

after gauging the BPS Skyrme model there are no topological solitons without magnetic

field. Hence, the BPS skyrmions are like two dimensional magnets with a permanent
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λ
µ −2

3λµ − 8
45λ
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Table 1. Energy, volume, magnetic compressibility, magnetization density and density of the

magnetic susceptibility for the non-back reaction approximation at H = 0.
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Figure 7. The magnetization density as a function of H and g. The analytical result without back

reaction is denoted by a dashed line, and the case H = 0 (see eq. (3.37)) by a dot.

magnetization. Such magnets behave as ferromagnets since they add positively, i.e., the

total magnetic flux of a baryon number n baby skyrmion is n times the flux of a n = 1

soliton.

It is interesting to notice that one can make the magnetic susceptibility arbitrar-

ily small.

Observe that the response to the external magnetic field is the standard one, in the

sense that the size of the compacton as well as the energy have a finite first (and higher)

derivative. Finally, we plot the numerical results for the magnetization density, the mag-

netic compressibility and the magnetic susceptibility in figures 7–9.

4 Pressure

4.1 Pressure in the ungauged BPS baby Skyrme model

There is a natural way to introduce pressure in the BPS (baby) Skyrme model, for details

we refer to [49]. Let us first rewrite the BPS baby Skyrme model as

L = −λ
2

8
j2
µ − µ2U (4.1)
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Figure 8. The magnetic compressibility as a function of H and g. The analytical result without

back reaction is denoted by a dashed line, and the case H = 0 (see eq. (3.30)) by a dot.
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Figure 9. The magnetic susceptibility as a function of H and g. The analytical result without

back reaction is denoted by a dashed line, and the case H = 0 (see eq. (3.43)) by a dot.

where

jµ = εµνρ~φ · (∂ν~φ× ∂ρ~φ) (4.2)

is the topological current and

j0 = 2 q, q ≡ φ · (∂1
~φ× ∂2

~φ). (4.3)

Then, for static configurations, the components of the energy-momentum tensor are

T 00 =
λ2

8
j2
0 + µ2U = E , T ij = δij

(
λ2

8
j2
0 − µ2U

)
≡ δijP (4.4)

where E ,P are the energy density and the pressure. Obviously, for zero pressure we obtain

the BPS equation for the (ungauged) BPS baby Skyrme model. In fact, BPS equations are
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often referred to as zero pressure conditions [50, 51]. However, it is a matter of fact that

equation
λ2

8
j2
0 − µ2U = P (4.5)

with a constant value of the pressure P = P is a first integral of the full static equations

of motion [49], where the pressure is now an integration constant. Hence, we find a one-

parameter set of first order equations which correspond to different fixed values of the

pressure.

In the case of the old baby potential (U = 2h) we get

λ2n2h2
y − µ2h = 0 (4.6)

which can be easily generalized to non-zero pressure

2λ2n2h2
y − 2µ2h = P. (4.7)

Hence,

λnhy = −µ
√
h+ P̃ (4.8)

where P̃ = P/2µ2. It is convenient to introduce z ≡ µ
nλy and then

hz = −
√
h+ P̃ (4.9)

with the conditions h(0) = 1 and h(Z) = 0, where Z is the size of the compacton in the

presence of the external pressure. We find

h =
1

4
(z − z0)2 − P̃ , z ≤ Z (4.10)

where

z0 = 2
√

1 + P̃ , Z = z0 − 2
√
P̃ = 2

(√
1 + P̃ −

√
P̃
)

(4.11)

Hence, the volume-pressure equation of state is

V = πR2 = π
2λn

µ
Z =

4πλn

µ

(√
1 + P̃ −

√
P̃
)
. (4.12)

Similarly, one can compute the energy

E = 4πµλ|n|
[

4

3
(1 + P̃ )3/2 +

2

3
P̃ 3/2 − 2P̃

√
1 + P̃

]
. (4.13)

Observe, that the energy has a smooth first derivative w.r.t. to the pressure, while the

corresponding derivative of the volume diverges, corresponding to an infinite (isothermal)

compressibility, [49].

Another example is the new baby potential V = 2h(1−h). Then, the non-zero pressure

equation

hz = −
√
h(1− h) + P̃ (4.14)
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gives
1− 2h

2
√
P̃ + h(1− h)

= tan(z − z0), z ≤ Z (4.15)

where

tan z0 =
1

2
√
P̃
, Z = 2z0 (4.16)

Hence,

V = π
2λn

µ
Z =

4πλn

µ
arctan

1

2
√
P̃

(4.17)

4.2 Pressure in the gauged BPS baby Skyrme model

The pressure may be introduced in the same manner in the gauged model. The corre-

sponding energy-momentum tensor for static configurations reads

T ij =
1

2

(
λ2Q2 − 2µ2U +

1

g2
B2

)
δij (4.18)

which still is the energy-momentum tensor of a perfect fluid. Again, the pressure is de-

fined as

T ij = δijP (4.19)

and is zero for the BPS solutions. Quite interestingly there is a generalization of the BPS

equations which leads to a non-zero but constant value of the pressure P = P . Namely

consider the usual BPS equations

Q = W ′ (4.20)

B = −g2λ2W (4.21)

where the superpotential is defined by

λ2W ′2 + g2λ4W 2 = 2µ2U + 2P. (4.22)

Then, this set of equations again leads to the full e.o.m. and gives T ij = Pδij .

It is rather surprising that the pressure may be introduced simply by a small change

in the definition of the superpotential W . There is also an intriguing similarity between

the non-zero pressure configurations and non-extremal solitons in the fake supersymmetric

theories. Indeed, the pressure seems to play exactly the same role as the non-extremality

parameter [52]. For example, it modifies the superpotential equation in a very similar

manner.

4.3 Pressure in the gauged BPS baby Skyrme model with asymptotically

constant magnetic field

In this case we get the BPS equation for the asymptotically constant magnetic field with

the superpotential defined as in the upper analyzed non-zero pressure case

Q = W (4.23)

B = −g2λ2W +H (4.24)
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and

λ2W ′2 + g2λ4W 2 − 2λ2WH = 2µ2U + 2P. (4.25)

It is a nice feature of the gauged BPS baby Skyrme model that both pressure and asymptot-

ically constant magnetic field may be introduced by modifications of the equation defining

the superpotential while the BPS equations remain unchanged.

5 Pressure and the old baby potential

5.1 Numerical computations

We solve the non-zero pressure generalized BPS equation for the old baby potential (3.1),

with the axially symmetric ansatz

2nhy(1 + a) = −1

2
Wh (5.1)

nay = −g2λ2W +H (5.2)

and
λ2

4
W 2
h + g2λ4W 2 − 2λ2WH = 4µ2h+ 2P (5.3)

with the following boundary condition

h(0) = 1, h(yP ) = 0, (5.4)

a(0) = 0, ay(yP ) =
H

n
(5.5)

Here, yP is the size of the compacton for a non-zero value of the pressure P . Again, for

numerics we assume λ = 1, n = 1 and take µ2 = 0.1 and g = 0.1. The superpotential obeys

the boundary conditions

W (h = 0) = 0, Wh(0) =
2
√

2P

λ
. (5.6)

Now, we find solutions for a few fixed values of H with different values of the pressure P ,

see figures 10, 11.

5.2 The boundary pressure approach

Non-zero pressure requires a solution of the BPS equations with the properly modified

superpotential equation which, in general, is a complicated computational problem. How-

ever, as we are dealing with BPS models the pressure is constant inside the soliton and

can, therefore, also be introduced as a non-zero derivative boundary condition for the mat-

ter field. Due to that, we can avoid to solve the superpotential equation. This, together

with the non-dynamical magnetic field approximation, (which appeared to be a quite good

approximation in the zero-pressure case) will lead us to an approximate but analytical

expression for the equation of state with non-zero values of H and P .
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Figure 10. The baby skyrmion profile h and magnetic potential a for H = 0.5 and P =

0.1, 0.2, 0.5, 1. Here g = 1. With increasing pressure, the size of the skyrmion diminishes, the

profile function h develops a large plateau h ∼ 1 inside the skyrmion and rapidly jumps to zero

near the boundary; the magnetic field becomes approximately constant and negative inside the

skyrmion for large P , again with a sudden jump to its constant and positive boundary value near

the boundary.

5.2.1 The non-gauged BPS baby Skyrme model

Here we show that the pressure can be introduced by a non-zero value for the derivative of

the baby skyrme field at the compacton boundary. In fact, this approach will give exactly

the same equation of state as before.

Let us again consider the equation of motion of the BPS baby Skyrme model with the

old baby potential

4λ2n2hyy − 2µ2 = 0 ⇒ h(y) =
µ2

4n2λ2
(y − y0)2 + C (5.7)

where y0, C are integration constants. Now, we modify the boundary condition

h(0) = 1, h(yp) = 0, hy(yp) = p (5.8)

where yp is the size of the compacton for non-zero value of the derivative hy at the boundary

yp. Hence, we get a one p- parameter family of solutions (p is negative)

h(y) = 1 +
µ2

4n2λ2

[
y2 − 2y

(
yp −

2n2λ2

µ2
p

)]
(5.9)

where the compacton radius satisfies

y2
p −

4n2λ2

µ2
ypp−

4n2λ2

µ2
= 0. (5.10)
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Figure 11. The baby skyrmion profile h and magnetic potential a for H = −0.5 and P =

0.1, 0.2, 0.5, 1. Here g = 1. With increasing pressure, the size of the skyrmion diminishes and the

plateau of the profile function becomes more pronounced.

It remains to connect the parameter p with the pressure P , which is defined as

P = 2n2λ2h2
y − 2µ2h = 2n2λ2h2

y − 2µ2h
∣∣
y=yp

(5.11)

where the last equality follows from the fact that the pressure is constant in the BPS model.

Hence

P = 2n2λ2hy(yp) = 2n2λ2p2 ⇒ p = − 1

nλ

√
P

2
. (5.12)

Inserting this into (5.10) gives

yp =
2nλ

µ

[√
1 +

P

2µ2
−
√

P

2µ2

]
(5.13)

which leads to the right equation of state.

5.2.2 The gauged BPS baby Skyrme model

Let us now apply this method for the gauged BPS Skyrme model with the assumption

of a non-dynamical magnetic field. Then, the field equation leads to the general solution

(β = H/n)

h(y) =
µ2

2n2λ2β2

[
ln(1 + βy) +

1 + βy0

1 + βy

]
+ C (5.14)

where y0, C are integration constants. Again, the boundary conditions are

h(0) = 1, h(yp) = 0, hy(yp) = p (5.15)
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where yp is the size of the compacton. Thus, the one p-parameter family of solutions reads

h(y) =
µ2

2n2λ2β2

[
ln(1 + βy)− βy

1 + βy
(1 + βy0)

]
+ 1 (5.16)

where
µ2

2n2λ2β2

[
ln(1 + βyp)−

βyp
1 + βyp

(1 + βy0)

]
+ 1 = 0 (5.17)

and

y0 = yp −
2n2λ2

µ2
(1 + βyp)

2p. (5.18)

Again, the parameter p must be related to the pressure by

P = 2n2λ2(1 + a)2hy
∣∣
y=yp

= 2n2λ2(1 + βy)2hy
∣∣
y=yp

= 2n2λ2(1 + βyp)
2p2 (5.19)

leading to

p = − 1

nλ(1 + βyp)

√
P

2
. (5.20)

Then, the relation between the size of the compacton yp and the pressure P is

βyp

(
1 + β

2nλ

µ2

√
P

2

)
− ln(1 + βyp) =

2n2λ2

µ2
β2 (5.21)

which gives the following exact equation of state

HV

2πn

(
1 +H

2λ

µ2

√
P

2

)
− ln

(
1 +

HV

2πn

)
=

2λ2

µ2
H2. (5.22)

In figure 12 we plot the numerically determined equation of state for the full model for

g = 0.2 together with the case without backreaction. We find that both figures are quite

similar. In figure 13, we plot the numerically determined equations of state for different

values of g. Using (5.22) it can be shown that the compressibility of the BPS baby matter

at any finite value of the external magnetic field is still infinite

κ = − 1

V

(
∂V

∂P

)

H, P=0

=∞. (5.23)

We remark that this is a property of the classical field theory, which should be modified

by quantum corrections. This will be relevant in applications where the quantization at

least of some degrees of freedom is required, as, e.g., in applications to nuclear matter in

three dimensions. This is also the case for a non-zero value of the electromagnetic coupling.

As an example, we plot the numerical compressibility as a function of P for g = 0.1 and

H = 0.3 in figure 14.

The magnetic compressibility is

κ0
mag(P ) =

1

V

(
∂V

∂H

)

P, H=0

=
2λ

3µ

(√
1 +

P

2µ2
−
√

P

2µ2

)
(5.24)
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Figure 12. The equation of state V = V (H,P ) for the non-back reaction approximation (left

figure) and for g = 0.2 (right figure).
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which can be expressed in terms of the volume density at zero magnetic field

κ0
mag(P ) =

1

6πn
V0. (5.25)

Here V0 ≡ V (H = 0, P ). The magnetic compressibility tends to zero as the pressure

grows. This is an expected result. The higher pressure squeezes the compactons to smaller

volumes (more dense matter). Hence, they behave stiffer under the action of the external

magnetic field.

Further, the energy is

E = −4π
µ2n

H
+

µ4V

2λ2H2



(

1 +
HV

2πn

)(
1 +

2λH

µ2

√
P

2

)2

− 1


 (5.26)

which together with the equation of state gives the E = E(H,P ) dependence. Notice that

the field theoretical pressure still fulfills the thermodynamic relation

(
∂E

∂V

)

H

= −P. (5.27)

It is possible to express the energy as a function of two independent variables only. Namely,

E(H,V ) = −4π
µ2n

H
+

µ4V

2λ2H2

[(
1 +

HV

2πn

)[
ln

(
1 +

HV

2πn

)
+

2λ2n2H2

µ2

]2(
2πn

HV

)2

− 1

]

(5.28)

Then, at vanishing H

E(H = 0, V ) =
8λ2n2π2

V0
+ µ2V0 −

µ4V 3
0

96λ2n2π2
(5.29)

which reproduces the energy-pressure relation for the non-gauge case. Moreover, using the

relation (
∂E

∂H

)

P

=

(
∂E

∂H

)

V

+

(
∂E

∂V

)

H

(
∂V

∂H

)

P

(5.30)

we can find the magnetization density at H = 0 as

m0(P ) = −8πλ2n

3

1

V0
= −2

3

λµ√
1 + P

2µ2
−
√

P
2µ2

(5.31)

Hence, the negative magnetization of the medium is enhanced by the pressure. It is a

consequence of the fact that the magnetization is pressure independent and therefore its

density diverges for large P as the volume shrinks. Another observation is that at H = 0

the magnetic compressibility is proportional to the inverse of the magnetization density.

Thus the following product is pressure independent

m0 · κ0
mag = −4λ2

9
. (5.32)
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6 An exact toy model

Here we exploit the fact that BPS baby skyrmions exist even in the case without a potential,

U = 0, if the external pressure takes a non-zero value. Of course, in the limit P → 0 the

solitons disappear, in accordance with the Derrick theorem. Concretely, we show that for

the model without potential one can find the equation of state V = V (H,P ) for any value

of the coupling constant g. Indeed, now the BPS system (for any value of the pressure)

may be solved exactly.

6.1 The BPS baby model

The corresponding first order equation reads

λ2

8
j2
0 = P ⇒ λ2n2h2

y = P (6.1)

where the axial ansatz together with the new target space and base space variables h and

y has been used. The obvious solution is

h = 1− y

y0
, y0 =

√
2λn√
P

(6.2)

for y ≤ y0 and 0 otherwise. Then the equation of state is

V 2P = 8π2λ2n2. (6.3)

6.2 The gauged BPS baby model

In the case without potential, the superpotential equation (in the case of external pres-

sure) is
λ2

4
W 2
h + g2λ4W 2 = 2P, W (0) = 0, W 2

h (0) =
8

λ2
P (6.4)

It can be easily solved,

W =

√
2P

gλ2
sin (2gλh) . (6.5)

Then, the BPS equations are

2nhy(1 + a) = −1

2
Wh = −

√
2P

λ
cos (2gλh) , (6.6)

nay = −g2λ2W = −
√

2Pg sin (2gλh) . (6.7)

This can be further integrated to

cos(2gλh)(1 + a) = C1 (6.8)

where C1 is a constant. It is consistent with the first second order equation of motion for

vanishing potential,

∂y[hy(1 + a)2] = 0, ⇒ hy =
C1

(1 + a)2
. (6.9)
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The constant C1 can be found from the boundary condition at y = 0. Indeed, a(0) = 0

and h(0) = 1 give C1 = cos(2gλ). Further, we can find a first order equation for the soliton

profile

2nhy = −
√

2P

λC1
cos2(2gλh) (6.10)

with the solution

tan 2gλh = −g
√

2P

nC1
(y − C2) ⇒ h =

1

2gλ
arctan

g
√

2P

nC1
(C2 − y) (6.11)

The boundary conditions lead to

C2 = y0,
C2

C1
=

n

g
√

2P
tan 2gλ (6.12)

where y0 denotes the compacton radius. Hence,

h =
1

2gλ
arctan

[
tan(2gλ)

(
1− y

y0

)]
. (6.13)

The equation for the magnetic field takes the following simple form

(1 + a) =
C1

cos(2gλh)
= cos(2gλ)

√
1 + tan2(2gλ)

(
1− y

y0

)2

. (6.14)

So, finally, the gauge field has the following form

a = −1 + cos(2gλ)

√
1 + tan2(2gλ)

(
1− y

y0

)2

(6.15)

which obeys a(0) = 0 and ay(y0) = 0. The asymptotic value is

a∞ = −1 + cos 2gλ. (6.16)

Moreover, the size of the compacton is

y0 =
n sin 2gλ

g
√

2P
. (6.17)

The corresponding equation of state is very similar to the non-gauge case

V 2P =
2π2

g2
n2 sin2 2gλ. (6.18)

6.3 The gauged BPS baby model with asymptotically constant magnetic field

It is convenient to use the “tilde” notation i.e., with the shifted superpotential

λ2

4
W̃ 2
h + g2λ4W̃ 2 =

H2

g2
+ 2P ≡ 2P̃ , W̃ (0) = − H

g2λ2
. (6.19)
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Now

W̃ =

√
2P̃

gλ2
sin (2gλh+ β) (6.20)

such that √
2P̃ sinβ = −H

g
⇒ sinβ = − H√

H2 + 2Pg2
. (6.21)

Then, the BPS equations are

2nhy(1 + a) = −1

2
W̃h = −

√
2P̃

λ
cos (2gλh+ β) , (6.22)

nay = −g2λ2W̃ = −
√

2P̃ g sin (2gλh+ β) . (6.23)

Repeating the same steps as before we find the following exact expression for the profile of

the compactons

tan (2gλh+ β) = tan(2gλ+ β)

(
1− g

√
2P̃ y

n sin(2gλ+ β)

)
, y ≤ y0 (6.24)

where

y0 =
n sin 2gλ

g
√

2P̃ cosβ
(6.25)

and the corresponding solution for a,

1 + a =
C1

cos(2gλh+ β)
. (6.26)

However, it is easy to show that

cosβ =

√
2P√
2P̃

(6.27)

Then, the equation of state reads

V 2P =
2π2n2 sin2 2gλ

g2
, (6.28)

which is exactly the same as in the usual gauge case. Hence, in contrast to the approximate

but analytical results for the old baby potential, the asymptotically constant magnetic field

does not change the size of the BPS baby skyrmions in the case without potential. Notice

that the electromagnetic coupling constant does influence the equation of state, although

the latter is H independent. As a consequence, the BPS skyrmions for zero potential form

a medium which is magnetically transparent.

All this shows that a particular form of the potential can drastically change the equa-

tion of state and some magnetic as well as thermodynamical properties of the BPS baby

Skyrme matter.
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7 Summary

In the present paper we have continued the investigation of the gauged BPS baby Skyrme

model. One first main result is that the model exactly preserves its BPS property also for

a nontrivial boundary condition for the magnetic field. In particular, it has been shown

that, in the case of an asymptotically constant value of the magnetic field B = H = const.,

there is a topological bound (for the regularized energy). Further the bound is saturated

for configurations obeying BPS equations. If compared with the zero boundary value case

(H = 0), the BPS equations are modified additively by the inclusion of the boundary

magnetic field. Moreover, also the superpotential equation slightly changes its form. Both

the BPS equations as well as the equation defining the superpotential may be brought to

the former case (H = 0) by a suitable redefinition of the target space variables and the

potential. The information on the nontrivial asymptotical value of the magnetic field is

then entirely encoded in the new boundary condition for the superpotential.

Moreover, using a recently proposed framework for the study of BPS models under

non-zero external pressure [49], we have shown how one can include pressure into the

gauged BPS baby Skyrme model by a further, simple modification of the superpotential

equation.

It is quite surprising that the different external parameters (pressure and external

magnetic field) enter into the BPS equation in a very similar and in fact very natural

manner. In addition, there is an intriguing similarity between the BPS equation with non-

zero H and P and the non-extremal solutions in the fake supersymmetric theories [52].

Another interesting observation is that certain global (integrated) quantities, like the

(regularized) energy, the (compacton) volume, or the magnetization are, in fact, thermo-

dynamic functions, i.e., they do not depend on the specific solution for which they are

evaluated. Instead, they give the same function of the external pressure P and magnetic

field H for all equilibrium configurations (solutions of the BPS equations), and these ther-

modynamic functions obey the standard thermodynamic relations, like M = (1/g2)Φreg

or P = −(∂Ereg/∂V )|H . Proving these relations is not trivial and requires the use of

the BPS equations, so the standard thermodynamics of the theory is probably related to

its BPS nature. More concretely, we proved the first relation, M = (1/g2)Φreg, for zero

pressure, but the generalization to nonzero pressure is trivial and just requires to replace

the potential U by the effective potential Ueff = U + (P/µ2) in the proof. On the other

hand, the second relation, P = −(∂Ereg/∂V )|H , has been proven only for the case without

electromagnetic coupling in [49], and for some specific examples in the present paper. The

general proof should probably follow a strategy similar to the proof of the first relation in

section 2.5, but is rendered more difficult due to the complicated expression (2.63) for the

“volume” (area).

We emphasize again that because of the symmetries of the theory, the thermodynamic

behaviour is completely independent of the shape of the skyrmions, and the model has the

thermodynamic properties of a ferromagnetic perfect fluid.

The existence of baby skyrmions has been confirmed for the old baby potential. First

of all, exact solutions have been found in the weak coupling regime, i.e., for the vanishing
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electrodynamic coupling constant g, which is equivalent to the non-back reaction limit.

Then, the BPS equations can be solved analytically even with non-zero H and P leading

not only to exact solutions but, more importantly, to an exact equation of state, that is, a

relation between the “volume” (area) and the pressure and external magnetic field at zero

temperature, V = V (P,H). Here the definition of the volume is straightforward, due to the

compact nature of the baby skyrmions once the old baby potential is chosen. Further, the

pressure, which is introduced in a standard field theoretic way as a component of the spatial

part of the energy-momentum tensor, agrees with the thermodynamical pressure. For non-

zero g, or for the system with dynamical gauge field, we performed numerical computations

which, on the one hand, completely confirm the weak coupling approximation while, on the

other hand, allow to understand the system also in the strongly coupled regime. Indeed,

we have found the equation of state for any value of the electromagnetic coupling constant.

Let us notice that the weak coupling approximation works surprisingly well even for quite

big values of the coupling constant. Some quantities, as the susceptibility, are almost g

independent (for H > 0).

Qualitatively, turning on the external magnetic field has the following effects on the

baby skyrmions.

• The external magnetic field H squeezes a baby skyrmion to a smaller size if it has the

same sign like the permanent magnetization M of the skyrmion, while it enlarges the

skyrmion if H and M have opposite signs. Concretely, for skyrmions with positive

topological charge, where M < 0, the external magnetic field squeezes skyrmions for

H < 0 and expands them for H > 0. For sufficiently large positive magnetic field we

have observed a linear growth of the size of the solitons, while for H → −∞ the size

decreases as 1/|H|.

• If H and M have opposite signs and H is sufficiently weak, then the phenomenon

of magnetic flux inversion occurs. That is to say, the total magnetic field B flips

sign in a shell or skin region near the boundary of the skyrmion, because it has to

take the value B = H at the boundary. On the other hand, it preserves its original

sign resulting from the permanent magnetization in the interior (core region) of the

skyrmion.

• Both the magnetization of the skyrmion, M = (1/g2)
∫
d2x(B−H), and the magnetic

susceptibility maintain their orientation (sign) for all values of the external magnetic

field H (negative for positive topological charge). The absolute value of the mag-

netization even grows for a large and oppositely oriented H, essentially because the

skyrmion size grows. It goes, however, to a finite value in the limit H → ∞, such

that the magnetization density goes to zero in that limit. The same is true for the

density of magnetic susceptibility.

• The main consequence of the equation of state is that the matter described by the

gauged BPS Skyrme model behaves as a rather nonlinear ferromagnetic medium. BPS

baby skyrmions remain magnetized even when the external magnetic field vanishes,
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i.e., they possess a permanent magnetization. The magnetic properties of the BPS

baby Skyrme matter may be made more pronounced by assuming sufficiently large

values for the parameter λ. That is to say, depending on the values of the parameters,

such a theory can model a weak as well as a strong magnetic medium.

• As one might expect, the pressure always squeezes the solitons. Notice that the

compressibility is always infinite for these classical skyrmion solutions, which already

holds in the non-gauged model as a consequence of the quadratic approach to the

vacuum for the old baby potential. This fact is not affected by gauging the model or

by the external magnetic field.

There are many open questions and new directions in which the present work may be

continued.

First of all, if we stay within the gauged BPS Skyrme model, there is the problem of

the relation between a particular choice for the potential and the corresponding equation

of state. If we restrict ourselves to the non-gauged case, then the analysis is very similar

to the one performed recently in [49]. The volume-pressure relation can be easily found.

Qualitatively different potentials are classified by their behavior near the vacuum (type of

approach) leading to finite or infinite values of the compressibility. When we switch to the

gauged version, the situation is more involved. In ref. [44] it was found that there are no

gauged solitons in the BPS model with double vacuum potentials (even in the non-BPS

sector), which is in contrast with the non-gauged case, where BPS baby skyrmions do exist

for potentials with both one or two vacua. However, as we observed in section 6, external

pressure may allow for baby skyrmions even if such solutions disappear in the P = 0 limit

due to the Derrick theorem. Hence, it is reasonable to expect that, if a non-zero pressure

is applied, skyrmions might appear also in the double vacuum potential case. Obviously,

the resulting equation of state will have a singularity for P = 0 or for some other (critical)

values of the external parameters P,H. The necessary condition for the appearance of

gauged baby skyrmions will be the existence of the superpotential W (as a solution of the

corresponding superpotential equation) on the whole interval h ∈ [0, 1]. As we now have

two external parameters to play with, it should be possible by performing a fine tuning to

find global solutions on the unit interval. This issue is under current investigation.

Secondly, it would be very interesting to check what happens if the Dirichlet term (the

standard nonlinear sigma model term) is added to the energy. Such a modification of the

gauged BPS model drastically changes its mathematical properties. The APD symmetries

are explicitly broken (up to U(1) rotations) and the theory is no longer BPS. It is also

known that some crystal structures usually emerge [53]. However, if we assume that the

main contribution to the energy comes from the BPS part of the full model, i.e., the

Dirichlet part is multiplied by a small parameter ε, we are still in a near BPS regime

with only softly broken APD symmetries (for a recent investigation of this issue, see [54]).

Hence, one may wonder whether, for sufficiently small ε, we would continue to have liquid

(plastic) ferromagnetic matter, as found for the BPS limit. Then, by increasing the value

of ε (Dirichlet term) we could observe a transition into a crystal phase whose magnetic

properties also remain to be found. For a phase diagram of the baby Skyrme model, but

in a rather different range of parameters, see [55].
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Unfortunately, the inclusion of the Dirichlet energy leads to several difficulties. As

solitons become infinitely extended, one has to use an improved definition of the volume.

However, there is an ambiguity in the definition of such a “physical” volume. Next, the

pressure cannot be introduced by a BPS like equation, which, as a consequence, leads to

the fact that it is not constant inside baby skyrmions. Nonetheless, the external pressure

can still be introduced by a pertinent boundary condition representing solitons in a finite

box (volume). Then, the field theoretical definition of the pressure would apply at the

boundary. Combining these problems together we notice that now there is no reason for

the field theoretical pressure to be also the thermodynamical pressure (that is to say, the

thermodynamic relation (∂E/∂V )H = −P need no longer be true). This may result in a

rather non-standard magnetothermodynamics.

Another straightforward generalization of the present research is to add the Chern-

Simon term or to non-minimally couple the gauge potential to the topological current

with the modification of the topological current to a gauge invariant (and still conserved)

version [40]. The main difference will be the appearance of a nontrivial temporal component

of the gauge potential i.e., a nonzero electric field. Then, the APD symmetry of the energy

integral will be lost. Since the (3+1) Skyrme model must also include the Wess-Zumino-

Witten term, it is quite important to know how such a type of term can modify the equation

of state and the magnetic properties of the medium.

In any case, as the baby Skyrme model found some applications in the context of

condensed matter physics [56–61], it is natural to compare also its thermodynamical and

magnetic properties with experimental data. It would be interesting to search for physical

systems which might be described by the (BPS) baby Skyrme model and its thermodynamic

properties, at least in a certain approximation.

Obviously, the most urgent issue is to perform an analogous analysis in the case of

the BPS Skyrme model in (3+1) dimensions. The first step has already been done in [49],

where the thermodynamics at zero temperature has been investigated. The generalization

to the gauged version (and its near BPS regime) is of high importance, as it would allow

to understand the magnetic properties of BPS skyrmions and, therefore, some magnetic

as well as thermodynamical properties of nuclear matter (for recent investigations of the

magnetic properties of QCD see [62–65]).
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