557 research outputs found
4D gravity localized in non Z_2-symmetric thick branes
We present a comparative analysis of localization of 4D gravity on a non
Z_2-symmetric scalar thick brane in both a 5-dimensional Riemannian space time
and a pure geometric Weyl integrable manifold. This work was mainly motivated
by the hypothesis which claims that Weyl geometries mimic quantum behaviour
classically. We start by obtaining a classical 4-dimensional Poincare invariant
thick brane solution which does not respect Z_2-symmetry along the
(non-)compact extra dimension. The scalar energy density of our field
configuration represents several series of thick branes with positive and
negative energy densities centered at y_0. The only qualitative difference we
have encountered when comparing both frames is that the scalar curvature of the
Riemannian manifold turns out to be singular for the found solution, whereas
its Weylian counterpart presents a regular behaviour. By studying the
transverse traceless modes of the fluctuations of the classical backgrounds, we
recast their equations into a Schroedinger's equation form with a volcano
potential of finite bottom (in both frames). By solving the Schroedinger
equation for the massless zero mode m^2=0 we obtain a single bound state which
represents a stable 4-dimensional graviton in both frames. We also get a
continuum gapless spectrum of KK states with positive m^2>0 that are suppressed
at y_0, turning into continuum plane wave modes as "y" approaches spatial
infinity. We show that for the considered solution to our setup, the potential
is always bounded and cannot adopt the form of a well with infinite walls;
thus, we do not get a discrete spectrum of KK states, and we conclude that the
claim that Weylian structures mimic, classically, quantum behaviour does not
constitute a generic feature of these geometric manifolds.Comment: 13 pages, 4 figures, JHEP forma
Horizon Problem Remediation via Deformed Phase Space
We investigate the effects of a special kind of dynamical deformation between
the momenta of the scalar field of the Brans-Dicke theory and the scale factor
of the FRW metric. This special choice of deformation includes linearly a
deformation parameter. We trace the deformation footprints in the cosmological
equations of motion when the BD coupling parameter goes to infinity. One class
of the solutions gives a constant scale factor in the late time that confirms
the previous result obtained via another approach in the literature. This
effect can be interpreted as a quantum gravity footprint in the coarse grained
explanation. The another class of the solutions removes the big bang
singularity, and the accelerating expansion region has an infinite temporal
range which overcomes the horizon problem. After this epoch, there is a
graceful exiting by which the universe enters in the radiation dominated era.Comment: 13 pages, 2 figures, to appear in GER
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Clinical, ultrasonographic and pathological aspects of iatrogenic thrombophlebitis in a mare - case report
ABSTRACT A 7-year-old quarter horse mare showed swelling of the tongue, head and neck region, dyspnea, and red urine after eight days of administration of intravenous medications by the animal's handler. The horse was referred to the University Veterinary Hospital of the Federal University of Pará and, at the clinical examination, showed apathy, edema in the head, neck, and tongue region, which was slightly cyanotic and with loss of epithelium in the dorsal region. The maxillary, linguofacial and external jugular veins were bilaterally engorged, firm to palpation and with cord-shaped appearance, with extension of the head to the entrance to the thoracic cavity. Ultrasound examination showed a thrombi with a hyperechoic and heterogeneous appearance that completely obstructed the vessel. The horse died five days after entering the Hospital and at necropsy it was observed: maxillary, linguofacial and external jugular veins bilaterally filled with firm, dark red to blackish thrombi; ulcerated areas in the final third of the esophagus and the stomach; lighter areas on the surface of the kidneys and dark areas at the corticomedullary junction. Based on clinical, ultrasonographic and necropsy findings, iatrogenic thrombophlebitis was diagnosed, associated with repeated injections of drugs administered intravenously
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different
energy ranges above eV with the surface detector array of
the Pierre Auger Observatory, reporting on both the phase and the amplitude
measurements of the first harmonic modulation in the right-ascension
distribution. Upper limits on the amplitudes are obtained, which provide the
most stringent bounds at present, being below 2% at 99% for EeV
energies. We also compare our results to those of previous experiments as well
as with some theoretical expectations.Comment: 28 pages, 11 figure
Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory
The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal
- …
