61 research outputs found

    Second Assessment of Climate Change for the Baltic Sea Basin

    Get PDF
    Earth System Sciences; Atmospheric Sciences; Baltic Sea; Environmental Impacts; Regional Climate Change; Regional Climate Projection

    Seasonal changes in vertical distribution patterns of cod (Gadus morhua) in the Bornholm Basin, central Baltic Sea

    Get PDF
    Hydroacoustic single fish detection and corresponding hydrographic measurements were used to study seasonal changes in vertical distribution of adult cod (Gadus morhua) in relation to ambient environmental conditions in the Bornholm Basin, central Baltic Sea. Sampling was conducted in April, June and August covering the years 2006–2009. Vertical distribution of individual fish was resolved from hydroacoustic single-target detection in combination with a fish-tracking algorithm and related to ambient hydrographic conditions. Based on a generalized linear effect model, both salinity and oxygen concentration were identified as key parameters affecting cod vertical distribution. Results also showed a clear seasonal effect with a more shallow distribution as the spawning season progressed and oxygen concentrations in the deep parts of the basin deteriorated. The upper limit of the distributional range was mostly constituted by the halocline and remained rather constant, whereas increasing oxygen depletion in the deep water layers lifted the lower boundary of the vertical distribution, leading to the observed upward shift in the overall distribution pattern. The results presented in this study highlight a significant shortcoming of the assessment survey design established for this species, as the observed shift in vertical distribution is not taken into account, thus introducing a potential bias into a data series used to tune the ICES standard stock assessment of this species

    Climate-driven long-term trends in Baltic Sea oxygen concentrations and the potential consequences for eastern Baltic cod (Gadus morhua)

    Get PDF
    Variations in oxygen conditions in the Baltic are influenced by several mechanisms. Generally, the frequency and magnitude of major inflows have been identified as the most crucial process for the renewal of oxygen-depleted water masses in the Baltic Sea. Furthermore, enhanced degradation of suspended organic matter by bacteria over the past few decades has increased oxygen consumption. Finally, the effects of large-scale climate warming are causing long-term variations in oxygen content and saturation as an observed increase in temperature has led to a general decrease in oxygen solubility of water masses. Oxygen-dependent relationships based on field data and laboratory experiments were used to analyse the impact of the observed decrease in oxygen content on eastern Baltic cod (Gadus morhua) stock-specific processes (e.g. survival rates of eggs, settlement probability of juveniles, habitat utilization of spawning fish, age structure of successful spawners, food consumption rates of adult fish). The observed long-term decline in oxygen conditions in the Baltic Sea has had a seemingly generally negative impact on oxygen-related processes for the different life stages of eastern Baltic cod. Experimentally derived results of oxygen-driven processes were validated by field data

    Grasslands of Northern Europe and the Baltic States

    Get PDF
    This chapter deals with the grasslands of Northern Europe (Denmark, Faroe Islands, Finland, Iceland, Norway, Sweden) and the Baltic States (Estonia, Latvia, Lithuania), with a focus on natural and semi-natural grasslands of the lowlands, thus treating arctic-alpine and strongly intensified types only marginally. At present, grasslands cover ca. 7% of the study region, half of which are natural grasslands (mostly arctic-alpine, to a smaller extent also azonal and extra-zonal) and the other half secondary grasslands created by human land use (livestock grazing or haymaking). Both grassland categories have high importance for biodiversity in many taxa. However, particularly the secondary grasslands are profoundly negatively affected by area loss (conversion to other land uses) and quality loss (mainly due to intensification and to abandonment). Conservation measures typically try to mimic traditional low-intensity land uses that are agronomically not profitable anymore.Peer reviewe

    Winter wave climate, storms and regional cycles: the SW Spanish Atlantic coast

    Get PDF
    Climatic change-related impacts on coastal areas became an important issue in past decades and nowadays threaten many human settlements and activities. Coastal hazards are linked to flooding and erosion processes associated with sea level rise and the increased strength of hurricanes, cyclones and storms. The main aim of this work is the characterization of coastal storms in Cadiz (SW Spain) and the determination of their recurrence intervals and relationships with several regional cycles. Storm characterization was carried out using the Storm Power Index (Dolan and Davis, 1992) and five classes were obtained, from class I (weak events) to V (extreme events). Storm occurrence probability was 96% for class I (i.e. almost one event per year) to 3% for class V. The return period for class V was 25 years and ranged from 6 to 8 years for classes III and IV storms, e.g. significant and severe events. Classes I and II showed a period of recurrence ranging from 1 to 3 years. Stormy winter seasons were 2009/10 (12 events), 1995/6 and 2002/3 (with 10 events each) and 1993/4 (8 events). Approximately 40% of the change in monthly wave data and storminess indices was related to several teleconnection patterns, the most important drivers of change being the Arctic Oscillation (AO), 21.45%, and the North Atlantic Oscillation (NAO), 19.65%. It is interesting to note that a great number of storms, larger storm duration and higher values of Storm Power Index were only observed when neutral to strong negative NAO and AO phases occurred at the same time (89 storms and 3355 h) and/or when there was an abrupt change of NAO and AO phases, i.e. they moved from a positive to negative phase without passing through a neutral phase. The results obtained in this work have wider applications for ocean and coastal management. It is suggested that methodology used can be easily applied in different areas where wave buoy data are available. In the same way, information obtained with this kind of work constitutes the first step in the development of coastal protection plans to preserve socio-economic activities from the impact of severe storm events

    The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world

    Get PDF
    Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.Peer reviewe

    Differences in stress tolerance and brood size between a non-indigenous and an indigenous gammarid in the northern Baltic Sea

    Get PDF
    Differences in stress tolerance and reproductive traits may drive the competitive hierarchy between nonindigenous and indigenous species and turn the former ones into successful invaders. In the northern Baltic Sea, the non-indigenous Gammarus tigrinus is a recent invader of littoral ecosystems and now occupies comparable ecological niches as the indigenous G. zaddachi. In laboratory experiments on specimens collected between June and August 2009 around Tva¨rminne in southern Finland (59°500N/23°150E), the tolerances towards heat stress and hypoxia were determined for the two species using lethal time, LT50, as response variable. The brood size of the two species was also studied and some observations were made on maturation of juveniles. Gammarus tigrinus was more resistant to hypoxia and survived at higher temperatures than G. zaddachi. Brood size was also greater in G. tigrinus than in G. zaddachi and G. tigrinus matured at a smaller size and earlier than G. zaddachi. Hence, there are clear competitive advantages for the non-indigenous G. tigrinus compared to the indigenous G. zaddachi, and these may be further strengthened through ongoing environmental changes related to increased eutrophication and a warming climate in the Baltic Sea region

    Climate change effects on phytoplankton depend on cell size and food web structure

    Get PDF
    We investigated the effects of warming on a natural phytoplankton community from the Baltic Sea, based on six mesocosm experiments conducted 2005–2009. We focused on differences in the dynamics of three phytoplankton size groups which are grazed to a variable extent by different zooplankton groups. While small-sized algae were mostly grazer-controlled, light and nutrient availability largely determined the growth of medium- and large-sized algae. Thus, the latter groups dominated at increased light levels. Warming increased mesozooplankton grazing on medium-sized algae, reducing their biomass. The biomass of small-sized algae was not affected by temperature, probably due to an interplay between indirect effects spreading through the food web. Thus, under the higher temperature and lower light levels anticipated for the next decades in the southern Baltic Sea, a higher share of smaller phytoplankton is expected. We conclude that considering the size structure of the phytoplankton community strongly improves the reliability of projections of climate change effects

    Sukses dalam Karier dan Rumah Tangga

    No full text
    • …
    corecore