92 research outputs found
A method for isolating and culturing placental cells from failed early equine pregnancies
Early pregnancy loss occurs in 6–10% of equine pregnancies making it the main cause of reproductive wastage. Despite this, reasons for the losses are known in only 16% of cases. Lack of viable conceptus material has inhibited investigations of many potential genetic and pathological causes. We present a method for isolating and culturing placental cells from failed early equine pregnancies. Trophoblast cells from 18/30 (60%) failed equine pregnancies of gestational ages 14–65 days were successfully cultured in three different media, with the greatest growth achieved for cells cultured in AmnioChrome™ Plus. Genomic DNA of a suitable quality for molecular assays was also isolated from 29/30 of these cases. This method will enable future investigations determining pathologies causing EPL
Electromagnetic transition form factors and dilepton decay rates of nucleon resonances
Relativistic, kinematically complete phenomenological expressions for the
dilepton decay rates of nucleon resonances with arbitrary spin and parity are
derived in terms of the magnetic, electric, and Coulomb transition form
factors. The dilepton decay rates of the nucleon resonances with masses below 2
GeV are estimated using the extended vector meson dominance model for the
transition form factors. The model provides a unified description of the photo-
and electroproduction data, the vector meson decays, and the dilepton decays of
the nucleon resonances. The constraints on the transition form factors from the
quark counting rules are taken into account. The parameters of the model are
fixed by fitting the available photo- and electroproduction data and using
results of the multichannel partial-wave analysis of the scattering.
Where experimental data are not available, predictions of the non-relativistic
quark models are used as an input. The vector meson coupling constants of the
magnetic, electric, and Coulomb types are determined. The dilepton widths and
the dilepton spectra from decays of nucleon resonances with masses below 2 GeV
are calculated.Comment: An error in the code is found and fixed. Numerical results for the
spin-half nucleon resonances changed. A few misprints are removed from the
text. 56 pages including 7 tables and 27 eps figures, REVTe
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Nuclear level densities and gamma-ray strength functions of 145,149,151Nd isotopes
Abstract: Please refer to full text to view abstract
Nuclear level densities and γ -ray strength functions of 180,181Ta and neutron capture cross sections
Abstract: Please refer to full text to view abstract
Resonances in odd-odd 182Ta
Abstract: Enhanced γ -decay on the tail of the giant electric dipole resonance, such as the scissors or pygmy resonances, can have significant impact on (n,γ ) reaction rates. These rates are important input for modeling processes that take place in astrophysical environments and nuclear reactors. Recent results from the University of Oslo indicate the existence of a significant enhancement in the photon strength function for nuclei in the actinide region due to the scissors resonance. Further, the M1 strength distribution of the scissors resonances in rare earth nuclei has been studied extensively over the years. To investigate the evolution and persistence of the scissor resonance in other mass regions, an experiment was performed utilizing the NaI(Tl) γ -ray detector array (CACTUS) and silicon particle telescopes (SiRi) at the University of Oslo Cyclotron laboratory. Particle-γ coincidences from the 181Ta(d,p)182Ta and 181Ta(d,d’)181Ta reactions were used to measure the nuclear level density and photon strength function of the well-deformed 181Ta and 182Ta systems, to investigate the existence of resonances below the neutron separation energy
- …