183 research outputs found
Source Dimensions in Ultrarelativistic Heavy Ion Collisions
Recent experiments on pion correlations, interpreted as interferometric
measurements of the collision zone, are compared with models that distinguish a
prehadronic phase and a hadronic phase. The models include prehadronic
longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and
rescattering of the produced hadrons. We find that the longitudinal and outward
radii are surprisingly sensitive to the algorithm used for two-body collisions.
The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a
heavy target requires the existence of a prehadronic phase which converts to
the hadronic phase at densities around 0.8-1.0 GeV/fm. The transverse radii
cannot be reproduced without introducing more complex dynamics into the
transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major
change is an additional discussion of the classical two-body collision
algorithm, a (compressed) postscript file of the complete paper including
figures can be obtained from Authors or via anonymous ftp at
ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.
On the dual structure of the auditory brainstem response in dogs
Objective: To use the over-complete discrete wavelet transform (OCDWT) to further examine the dual structure of auditory brainstem response (ABR) in the dog. Methods: ABR waveforms recorded from 20 adult dogs at supra-threshold (90 and 70 dBnHL) and threshold (0-15 dBSL) levels were decomposed using a six level OCDWT and reconstructed at individual scales (frequency ranges) A6 (0-391 Hz), D6 (391-781 Hz), and D5 (781-1563 Hz). Results: At supra-threshold stimulus levels, the A6 scale (0-391 Hz) showed a large amplitude waveform with its prominent wave corresponding in latency with ABR waves II/III; the D6 scale (391-781 Hz) showed a small amplitude waveform with its first four waves corresponding in latency to ABR waves I, II/III, V, and VI; and the D5 scale (781-1563 Hz) showed a large amplitude, multiple peaked waveform with its first six waves corresponding in latency to ABR waves I, II, III, IV, V, and VI. At threshold stimulus levels (0-15 dBSL), the A6 scale (0-391 Hz) continued to show a relatively large amplitude waveform, but both the D6 and D5 scales (391781 and 781-1563 Hz, respectively) now showed relatively small amplitude waveforms. Conclusions: A dual structure exists within the ABR of the dog, but its relative structure changes with stimulus level. Significance: The ABR in the dog differs from that in the human both in the relative contributions made by its different frequency components, and the way these components change with stimulus level. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved
Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model
The space-time dynamics and pion-HBT radii in central heavy ion-collisions at
CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The
dependence of the dynamics and the HBT-parameters on the EoS is studied with
different parametrisations of a chiral SU(3) sigma-omega model. The
selfconsistent collective expansion includes the effects of effective hadron
masses, generated by the nonstrange and strange scalar condensates. Different
chiral EoS show different types of phase transitions and even a crossover. The
influence of the order of the phase transition and of the difference in the
latent heat on the space-time dynamics and pion-HBT radii is studied. A small
latent heat, i.e. a weak first-order chiral phase transition, or even a smooth
crossover leads to distinctly different HBT predictions than a strong first
order phase transition. A quantitative description of the data, both at SPS
energies as well as at RHIC energies, appears difficult to achieve within the
ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order
quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT
data from CERN-SPS and BNL-RHIC
Photon interferometry and size of the hot zone in relativistic heavy ion collisions
The parameters obtained from the theoretical analysis of the single photon
spectra observed by the WA98 collaboration at SPS energies have been used to
evaluate the two photon correlation functions. The single photon spectra and
the two photon correlations at RHIC energies have also been evaluated, taking
into account the effects of the possible spectral change of hadrons in a
thermal bath. We find that the ratio for SPS and
for RHIC energy.Comment: text changed, figures adde
Various Models for Pion Probability Distributions from Heavy-Ion Collisions
Various models for pion multiplicity distributions produced in relativistic
heavy ion collisions are discussed. The models include a relativistic
hydrodynamic model, a thermodynamic description, an emitting source pion laser
model, and a description which generates a negative binomial description. The
approach developed can be used to discuss other cases which will be mentioned.
The pion probability distributions for these various cases are compared.
Comparison of the pion laser model and Bose-Einstein condensation in a laser
trap and with the thermal model are made. The thermal model and hydrodynamic
model are also used to illustrate why the number of pions never diverges and
why the Bose-Einstein correction effects are relatively small. The pion
emission strength of a Poisson emitter and a critical density
are connected in a thermal model by , and this fact
reduces any Bose-Einstein correction effects in the number and number
fluctuation of pions. Fluctuations can be much larger than Poisson in the pion
laser model and for a negative binomial description. The clan representation of
the negative binomial distribution due to Van Hove and Giovannini is discussed
using the present description. Applications to CERN/NA44 and CERN/NA49 data are
discussed in terms of the relativistic hydrodynamic model.Comment: 12 pages, incl. 3 figures and 4 tables. You can also download a
PostScript file of the manuscript from
http://p2hp2.lanl.gov/people/schlei/eprint.htm
Bose-Einstein Correlations for Systems with Large Halo
Model-independent considerations are presented for the calculation of
Bose-Einstein correlation functions and momentum distributions which describe
boson-emitting systems containing a central part surrounded by a large halo. If
the characteristic geometrical size of the halo is sufficiently large, the
contributions of central part and the halo to the invariant momentum
distribution are shown to be separable. The momentum-dependence of the
intercept parameter of the correlation function plays a central role. Almost
all high energy reactions including lepton-lepton, lepton hadron, hadron-hadron
and nuclear reactions are shown to be interpretable as boson emitting systems
with large halo. The results are applied to certain high energy heavy ion data
at CERN SPS. New insights are obtained for the description of low transverse
momentum enhancement of pions.Comment: Z. Phys. C in press, LaTeX, ReVTeX, 20 pages + 2 ps figure
Last Call for RHIC Predictions
This paper contains the individual contributions of all speakers of the
session on 'Last Call for RHIC Predictions' at Quark Matter 99, and a summary
by the convenor.Comment: 56 pages, psfig, epsf, epsfig, graphicx style files required,
Proceedings of the XIV Int. Conf. on Nucleus-Nucleus Collisions, Quark Matter
99, Torino, Italy, May 10 - 15, 1999. Typographical mistakes corrected and
figure numbers change
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
- …