491 research outputs found
Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li
We apply the Lee-Suzuki iteration method to calculate the linked-folded
diagram series for a new Nijmegen local NN potential. We obtain an exact
starting-energy-independent effective two-body interaction for a multi-shell,
no-core, harmonic-oscillator model space. It is found that the resulting
effective-interaction matrix elements can be well approximated by the Brueckner
G-matrix elements evaluated at starting energies selected in a simple way.
These starting energies are closely related to the energies of the initial
two-particle states in the ladder diagrams. The ``exact'' and approximate
effective interactions are used to calculate the energy spectrum of 6Li in
order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request).
University of Arizona preprint, Number unassigne
Shell-model calculations of neutrino scattering from 12C
Neutrino reaction cross-sections, , ,
-capture and photoabsorption rates on C are computed within a
large-basis shell-model framework, which included excitations up to
. When ground-state correlations are included with an open
-shell the predictions of the calculations are in reasonable agreement with
most of the experimental results for these reactions. Woods-Saxon radial wave
functions are used, with their asymptotic forms matched to the experimental
separation energies for bound states, and matched to a binding energy of 0.01
MeV for unbound states. For comparison purposes, some results are given for
harmonic oscillator radial functions. Closest agreement between theory and
experiment is achieved with unrestricted shell-model configurations and
Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive
cross sections: cm for the
decay-in-flight flux in agreement with the LSND datum of
cm; and cm for the decay-at-rest flux, less than the
experimental result of cm.Comment: 19 pages. ReVTeX. No figure
Large-space shell-model calculations for light nuclei
An effective two-body interaction is constructed from a new Reid-like
potential for a large no-core space consisting of six major shells and is used
to generate the shell-model properties for light nuclei from =2 to 6. (For
practical reasons, the model space is partially truncated for =6.) Binding
energies and other physical observables are calculated and compare favorably
with experiment.Comment: prepared using LaTex, 21 manuscript pages, no figure
Final-State Phases in Charmed Meson Two-Body Nonleptonic Decays
Observed decay rates indicate large phase differences among the amplitudes
for the charge states in and but
relatively real amplitudes in the charge states for . This
feature is traced using an SU(3) flavor analysis to a sign flip in the
contribution of one of the amplitudes contributing to the latter processes in
comparison with its contribution to the other two sets. This amplitude may be
regarded as an effect of rescattering and is found to be of magnitude
comparable to others contributing to charmed particle two-body nonleptonic
decays.Comment: 19 pages, latex, 4 figures, to be submitted to Phys. Rev.
Strangeness nuclear physics: a critical review on selected topics
Selected topics in strangeness nuclear physics are critically reviewed. This
includes production, structure and weak decay of --Hypernuclei, the
nuclear interaction and the possible existence of bound
states in nuclei. Perspectives for future studies on these issues are also
outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical
Journal
Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator
The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions
(profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
- âŠ