131 research outputs found
The Mariner 6 and 7 flight paths and their determination from tracking data
Determination of orbit estimates for Mariner 6 and 7 space probe flight
Genome-wide Association Study of Borderline Personality Disorder Reveals Genetic Overlap with Bipolar Disorder, Major Depression and Schizophrenia
Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case–control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10−7) and PKP4 (P=8.67 × 10−7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (rg=0.28 [P=2.99 × 10−3]), SCZ (rg=0.34 [P=4.37 × 10−5]) and MDD (rg=0.57 [P=1.04 × 10−3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies
In-depth profiling of COVID-19 risk factors and preventive measures in healthcare workers
Purpose To determine risk factors for coronavirus disease 2019 (COVID-19) in healthcare workers (HCWs), characterize symptoms, and evaluate preventive measures against SARS-CoV-2 spread in hospitals. Methods In a cross-sectional study conducted between May 27 and August 12, 2020, after the first wave of the COVID-19 pandemic, we obtained serological, epidemiological, occupational as well as COVID-19-related data at a quaternary care, multicenter hospital in Munich, Germany. Results 7554 HCWs participated, 2.2% of whom tested positive for anti-SARS-CoV-2 antibodies. Multivariate analysis revealed increased COVID-19 risk for nurses (3.1% seropositivity, 95% CI 2.5-3.9%, p = 0.012), staff working on COVID-19 units (4.6% seropositivity, 95% CI 3.2-6.5%, p = 0.032), males (2.4% seropositivity, 95% CI 1.8-3.2%, p = 0.019), and HCWs reporting high-risk exposures to infected patients (5.5% seropositivity, 95% CI 4.0-7.5%, p = 0.0022) or outside of work (12.0% seropositivity, 95% CI 8.0-17.4%, p < 0.0001). Smoking was a protective factor (1.1% seropositivity, 95% CI 0.7-1.8% p = 0.00018) and the symptom taste disorder was strongly associated with COVID-19 (29.8% seropositivity, 95% CI 24.3-35.8%, p < 0.0001). An unbiased decision tree identified subgroups with different risk profiles. Working from home as a preventive measure did not protect against SARS-CoV-2 infection. A PCR-testing strategy focused on symptoms and high-risk exposures detected all larger COVID-19 outbreaks. Conclusion Awareness of the identified COVID-19 risk factors and successful surveillance strategies are key to protecting HCWs against SARS-CoV-2, especially in settings with limited vaccination capacities or reduced vaccine efficacy
PLoS Pathog
Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5' end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement
Transmembrane Protein TMEM230, Regulator of Glial Cell Vascular Mimicry and Endothelial Cell Angiogenesis in High-Grade Heterogeneous Infiltrating Gliomas and Glioblastoma
High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors
Transmembrane protein TMEM230, a target of glioblastoma therapy
Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis
How did episiotomy rates change from 2007 to 2014? Population-based study in France
International audienceBACKGROUND: Since the 2000s, selective episiotomy has been systematically recommended worldwide. In France, the recommended episiotomy rate in vaginal deliveries is less than 30%. The aims of this study were to describe the evolution of episiotomy rates between 2007 and 2014, especially for vaginal deliveries without instrumental assistance and to assess individual characteristics and birth environment factors associated with episiotomy.METHODS: This population-based study included all hospital discharge abstracts for all deliveries in France from 2007 to 2014. The use of episiotomy in vaginal deliveries was identified by one code in the French Common Classification of Medical Procedures. The episiotomy rate per department and its evolution is described from 2007 to 2014. A mixed model was used to assess associations with episiotomy for non-operative vaginal deliveries and the risk factors related to the women's characteristics and the birth environment.RESULTS: There were approximately 540,000 non-operative vaginal deliveries per year, in the study period. The national episiotomy rate for vaginal deliveries overall significantly decreased from 26.7% in 2007 to 19.9% in 2014. For non-operative deliveries, this rate fell from 21.1% to 14.1%. For the latter, the use of episiotomy was significantly associated with breech vaginal delivery (aOR = 1.27 [1.23-1.30]), epidural analgesia (aOR = 1.45 [1.43-1.47]), non-reassuring fetal heart rate (aOR = 1.47 [1.47-1.49]), and giving birth for the first time (aOR = 3.85 [3.84-4.00]).CONCLUSIONS: The episiotomy rate decreased throughout France, for vaginal deliveries overall and for non-operative vaginal deliveries. This decrease is probably due to proactive changes in practices to restrict the number of episiotomies, which should be performed only if beneficial to the mother and the infant
Benzo[a]pyrene, Aflatoxine B1 and Acetaldehyde Mutational Patterns in TP53 Gene Using a Functional Assay: Relevance to Human Cancer Aetiology
Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers
Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype–phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This “genotype-first” approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior
- …
