3,250 research outputs found
Estimating the gas hydrate recovery prospects in the western Black Sea basin based on the 3D multiphase flow of fluid and gas components within highly permeable paleo-channel-levee systems
Gas hydrate deposits are abundant in the Black Sea region and confirmed by direct observations as well as geophysical evidence, such as continuous bottom simulating reflectors (BSRs). Although those gas hydrate accumulations have been well-studied for almost two decades, the migration pathways of methane that charge the gas hydrate stability zone (GHSZ)
in the region are unknown. The aim of this study is to explore the most probable gas migration scenarios within a three-dimensional finite element grid based on seismic surveys and available basin cross-sections. We have used the commercial software PetroMod TM(Schlumberger) to perform a set of sensitivity studies that narrow the gap between the wide range of sediment properties affecting the multi-phase flow in porous media.
The high-resolution model domain focuses on the Danube deep-sea fan and associated buried sandy channel-levee systems whereas the total extension of the model domain covers a larger area of the western Black Sea basin. Such a large model domain allows for investigating biogenic as well as thermogenic
methane generation and a permeability driven migration of the free phase of methane
on a basin scale to confirm the hypothesis of efficient methane migration into the gas hydrate reservoir layers by horizontal flow along the carrier beds
Numerical simulation of small perturbation on an accretion disk due to the collision of a star with the disk near the black hole
In this paper, perturbations of an accretion disk by a star orbiting around a
black hole are studied. We report on a numerical experiment, which has been
carried out by using a parallel-machine code originally developed by D\"{o}nmez
(2004). An initially steady state accretion disk near a non-rotating
(Schwarzschild) black hole interacts with a "star", modeled as an initially
circular region of increased density. Part of the disk is affected by the
interaction. In some cases, a gap develops and shock wave propagates through
the disk. We follow the evolution for order of one dynamical period and we show
how the non-axisymetric density perturbation further evolves and moves
downwards where the material of the disk and the star become eventually
accreted onto the central body.
When the star perturbs the steady state accretion disk, the disk around the
black hole is destroyed by the effect of perturbation. The perturbed accretion
disk creates a shock wave during the evolution and it loses angular momentum
when the gas hits on the shock waves. Colliding gas with the shock wave is the
one of the basic mechanism of emitting the rays in the accretion disk. The
series of supernovae occurring in the inner disk could entirely destroy the
disk in that region which leaves a more massive black hole behind, at the
center of galaxies.Comment: 20pages, 8 figures, accepted for publication in Astrophysics and
Space Scienc
Nuclear medicine procedures and the evaluation of male sexual organs: a short review
Sexuality consists of three aspects that are interrelated and inseparable, biological, physiological and social. The biological aspect considers the individual's capability to give and to receive pleasure. In consequence, it covers the functionality of the sexual organs and the physiology of human sexual response cycle. Diagnostic imaging modalities, such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been used to evaluate clinical disorders of the male reproductive system. PET and SPECT procedures basically involve the administration of a radiopharmaceutical that has a higher uptake in a specific tumor or tissue. The aim of this brief review is to present some radiopharmaceuticals that have been used in the clinical evaluation of the male sexual organs (testes, prostate, seminal vesicles, penis) related with male sexuality. This information could be useful in better understanding the male sexual response cycle, as well as the sexual disorders, when considering the male sexual organs and the pelvic floor. Moreover, the findings obtained with PET and SPECT imaging could help to evaluate the efficacy of clinical results of therapeutic procedures. In conclusion, the knowledge from these images could aid in better understanding the physiology of the different organs related with sexuality. Furthermore, they could be important tools to evaluate the physiological integrity of the involved organs, to improve clinical strategies and to accompany the patients under treatment
TESS asteroseismology of the known red-giant host stars HD 212771 and HD 203949
International audienc
Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure
The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5
Recommended from our members
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15-18 March 2016.
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
Infection-mediated priming of phagocytes protects against lethal secondary Aspergillus fumigatus challenge
Phagocytes restrict the germination of Aspergillus fumigatus conidia and prevent the establishment of invasive pulmonary aspergillosis in immunecompetent mice. Here we report that immunecompetent mice recovering from a primary A. fumigatus challenge are protected against a secondary lethal challenge. Using RAGγc knock-out mice we show that this protection is independent of T, B and NK cells. In protected mice, lung phagocytes are recruited more rapidly and are more efficient in conidial phagocytosis and killing. Protection was also associated with an enhanced expression of CXCR2 and Dectin-1 on bone marrow phagocytes. We also show that protective lung cytokine and chemokine responses are induced more rapidly and with enhanced dynamics in protected mice. Our findings support the hypothesis that following a first encounter with a non-lethal dose of A. fumigatus conidia, the innate immune system is primed and can mediate protection against a secondary lethal infection
In-plant testing of membranes to treat electroplating wastewater
This is the final report submitted for the work performed under the NASA Cooperative Agreement NCC3-301 for the project entitled 'In-Plant Testing of Membranes To Treat Electroplating Waste water'. The main objective of the research project was to determine if the crosslinked polyacrylic acid salt films developed by NASA scientists could be used for heavy metal removal from the wastewater generated by the metals-finishing or electroplating industry. A variety of tasks identified in the original proposal were completed. These included: (1) analysis of our industrial partner Aetna Plating's zinc electroplating process and its wastewater treatment needs for zinc removal; (2) design and construction of a laboratory-scale unit to continuously supply and remove the ion exchange films from the zinc wastewater; (3) performance of a series of runs on such a unit to determine its operating characteristics; and (4) design of a prototype unit for use at the industrial site. In addition, there were a number of tasks that had not been identified in the original proposal but were later judged to be necessary for the successful completion of the project. These were: (1) batch equilibrium and kinetic experiments with analysis of the experimental results to accurately determine the equilibrium and kinetic parameters for the ion exchange films; (2 ) simulation studies for proper design of the prototype unit; and (3) preliminary runs to exchange the films from H form to Calcium form
Clinical, paraclinical and serological findings in Susac syndrome: an international multicenter study
Background: Susac syndrome (SuS) is a rare disorder thought to be caused by autoimmune-mediated occlusions of microvessels in the brain, retina and inner ear leading to central nervous system (CNS) dysfunction, visual disturbances due to branch retinal artery occlusions (BRAO), and hearing deficits. Recently, a role for anti-endothelial cell antibodies (AECA) in SuS has been proposed. Objectives: To report the clinical and paraclinical findings in the largest single series of patients so far and to investigate the frequency, titers, and clinical relevance of AECA in SuS. Patients and methods: A total of 107 serum samples from 20 patients with definite SuS, 5 with abortive forms of SuS (all with BRAO), and 70 controls were tested for AECA by immunohistochemistry employing primate brain tissue sections. Results: IgG-AECA >1:100 were detected in 25% (5/20) of patients with definite SuS and in 4.3% (3/70) of the controls. Median titers were significantly higher in SuS (1:3200, range 1:100 to 1:17500) than in controls (1:100, range 1:10 to 1:320); IgG-AECA titers >1:320 were exclusively present in patients with SuS; three controls had very low titers (1:10). Follow-up samples (n = 4) from a seropositive SuS patient obtained over a period of 29 months remained positive at high titers. In all seropositive cases, AECA belonged to the complement-activating IgG1 subclass. All but one of the IgG-AECA-positive samples were positive also for IgA-AECA and 45% for IgM-AECA. SuS took a severe and relapsing course in most patients and was associated with bilateral visual and hearing impairment, a broad panel of neurological and neuropsychological symptoms, and brain atrophy in the majority of cases. Seropositive and seronegative patients did not differ with regard to any of the clinical or paraclinical parameters analyzed. Conclusions: SuS took a severe and protracted course in the present cohort, resulting in significant impairment. Our finding of high-titer IgG1 and IgM AECA in some patients suggest that humoral autoimmunity targeting the microvasculature may play a role in the pathogenesis of SuS, at least in a subset of patients. Further studies are warranted to define the exact target structures of AECA in SuS
A Step Forward in Molecular Diagnostics of Lyssaviruses – Results of a Ring Trial among European Laboratories
Rabies is a lethal and notifiable zoonotic disease for which diagnostics have to meet the highest standards. In recent years, an evolution was especially seen in molecular diagnostics with a wide variety of different detection methods published. Therefore, a first international ring trial specifically designed on the use of reverse transcription polymerase chain reaction (RT-PCR) for detection of lyssavirus genomic RNA was organized. The trial focussed on assessment and comparison of the performance of conventional and real-time assays. In total, 16 European laboratories participated. All participants were asked to investigate a panel of defined lyssavirus RNAs, consisting of Rabies virus (RABV) and European bat lyssavirus 1 and 2 (EBLV-1 and -2) RNA samples, with systems available in their laboratory. The ring trial allowed the important conclusion that conventional RT-PCR assays were really robust assays tested with a high concordance between different laboratories and assays. The real-time RT-PCR system by Wakeley et al. (2005) in combination with an intercalating dye, and the combined version by Hoffmann and co-workers (2010) showed good sensitivity for the detection of all RABV samples included in this test panel. Furthermore, all used EBLV-specific assays, real-time RT-PCRs as well as conventional RT-PCR systems, were shown to be suitable for a reliable detection of EBLVs. It has to be mentioned that differences were seen in the performance between both the individual RT-PCR systems and the laboratories. Laboratories which used more than one molecular assay for testing the sample panel always concluded a correct sample result. Due to the markedly high genetic diversity of lyssaviruses, the application of different assays in diagnostics is needed to achieve a maximum of diagnostic accuracy. To improve the knowledge about the diagnostic performance proficiency testing at an international level is recommended before using lyssavirus molecular diagnostics e.g. for confirmatory testing
- …
