402 research outputs found

    Pilbarana, a new subterranean amphipod genus (Hadzioidea: Eriopisidae) of environmental assessment importance from the Pilbara, Western Australia

    Get PDF
    The Pilbara and nearby regions in north-western Western Australia have an exceptionally high diversity of short-range endemic invertebrates inhabiting threatened groundwater-dependent habitats. Amphipod crustaceans, in particular, are dominant in these communities, but are poorly understood taxonomically, with many undescribed species. Recent molecular phylogenetic analyses of Pilbara eriopisid amphipods have, nonetheless, uncovered a previously unknown biodiversity. In this study, we formally establish a new genus, Pilbarana Stringer & King gen. nov., and describe two new species, P. grandis Stringer & King sp. nov. from Cane River Conservation Park and P. lowryi Stringer & King sp. nov. from the Fortescue River Basin near the Hamersley Range, using a combination of molecular and morphological data. The new genus is similar morphologically to the two additional Western Australian eriopisid genera, Nedsia Barnard & Williams, 1995 and Norcapensis Bradbury & Williams, 1997, but represents a genetically divergent, reciprocally monophyletic lineage, which can be differentiated by its vermiform body shape, the presence of an antennal sinus, and by the length and form of the antennae and uropods. This research signifies an important contribution to knowledge of Pilbara subterranean communities and has critical implications for future environmental impact assessments and conservation management.Danielle N. Stringer, Rachael A. King, Andrew D. Austin, Michelle T. Guzi

    Refining trophic dynamics through multi-factor Bayesian mixing models: A case study of subterranean beetles

    Get PDF
    © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd Food web dynamics are vital in shaping the functional ecology of ecosystems. However, trophic ecology is still in its infancy in groundwater ecosystems due to the cryptic nature of these environments. To unravel trophic interactions between subterranean biota, we applied an interdisciplinary Bayesian mixing model design (multi-factor BMM) based on the integration of faunal C and N bulk tissue stable isotope data (d13C and d15N) with radiocarbon data (?14C), and prior information from metagenomic analyses. We further compared outcomes from multi-factor BMM with a conventional isotope double proxy mixing model (SIA BMM), triple proxy (d13C, d15N, and ?14C, multi-proxy BMM), and double proxy combined with DNA prior information (SIA + DNA BMM) designs. Three species of subterranean beetles (Paroster macrosturtensis, Paroster mesosturtensis, and Paroster microsturtensis) and their main prey items Chiltoniidae amphipods (AM1: Scutachiltonia axfordi and AM2: Yilgarniella sturtensis), cyclopoids and harpacticoids from a calcrete in Western Australia were targeted. Diet estimations from stable isotope only models (SIA BMM) indicated homogeneous patterns with modest preferences for amphipods as prey items. Multi-proxy BMM suggested increased—and species-specific—predatory pressures on amphipods coupled with high rates of scavenging/predation on sister species. SIA + DNA BMM showed marked preferences for amphipods AM1 and AM2, and reduced interspecific scavenging/predation on Paroster species. Multi-factorial BMM revealed the most precise estimations (lower overall SD and very marginal beetles' interspecific interactions), indicating consistent preferences for amphipods AM1 in all the beetles' diets. Incorporation of genetic priors allowed crucial refining of the feeding preferences, while integration of more expensive radiocarbon data as a third proxy (when combined with genetic data) produced more precise outcomes but close dietary reconstruction to that from SIA + DNA BMM. Further multidisciplinary modeling from other groundwater environments will help elucidate the potential behind these designs and bring light to the feeding ecology of one the most vital ecosystems worldwide

    Workflow Collaboration with Constraint Solving Capabilities

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.This paper describes our efforts to provide a collaborative problem solving architecture driven by semantic-based workflow orchestration and constraint problem solving. These technologies are based on shared ontologies that allows two systems of very different natures to communicate, perform specialised tasks and achieve common goals. We give an account of our approach for the workflow assisted collaboration with constraint solving capabilities. We found that systems built with semantic (web) based technologies is useful for collaboration and flexible to enhance the system with specialised capabilities. However, much care must be exercised before correct semantics may be exchanged and collaborations occur smoothly

    Evidence against or for topological defects in the BOOMERanG data ?

    Full text link
    The recently released BOOMERanG data was taken as ``contradicting topological defect predictions''. We show that such a statement is partly misleading. Indeed, the presence of a series of acoustic peaks is perfectly compatible with a non-negligible topological defects contribution. In such a mixed perturbation model (inflation and topological defects) for the source of primordial fluctuations, the natural prediction is a slightly lower amplitude for the Doppler peaks, a feature shared by many other purely inflationary models. Thus, for the moment, it seems difficult to rule out these models with the current data.Comment: 4 pages, 1 figure. Some changes following extraordinarily slow referee Reports and new data. Main results unchanged (sorry

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    Taking eDNA underground: factors affecting eDNA detection of subterranean fauna in groundwater

    Get PDF
    First published: 31 March 2023. OnlinePublStygofauna are aquatic fauna that have evolved to live underground. The impacts of anthropogenic climate change, extraction and pollution on groundwater pose major threats to groundwater health, prompting the need for efficient and reliable means to detect and monitor stygofaunal communities. Conventional survey techniques for these species rely on morphological identification and can be biased, labour intensive, and often indeterminate to lower taxonomic levels. By contrast, environmental DNA (eDNA)-based methods have the potential to dramatically improve on existing stygofaunal survey methods in a large range of habitats and for all life stages, reducing the need for the destructive manual collection of often critically endangered species or specialized taxonomic expertise. We compared eDNA and haul-net samples collected in 2020 and 2021 from 19 groundwater bores and a cave on Barrow Island, located north-west of Western Australia, and assessed how sampling factors influenced the quality of eDNA detection of stygofauna. The two detection methods were complementary, eDNA metabarcoding was able to detect soft-bodied taxa and fish often missed by nets, but only detected seven of the nine stygofaunal crustacean orders identified from haul-net specimens. Our results also indicated that eDNA metabarcoding could detect 54-100% of stygofauna from shallow water samples and 82-90% from sediment samples. However, there was significant variation in stygofaunal diversity between sample years and sampling types. The findings of this study demonstrate that haul net sampling has a tendency to underestimate stygofaunal diversity and that eDNA metabarcoding of groundwater can substantially improve efficiency of stygofaunal surveys.Mieke van der Heyde, Nicole E. White, Paul Nevill, Andrew D. Austin, Nicholas Stevens, Matt Jones, Michelle T. Guzi

    Time capsules of biodiversity: Future research directions for groundwater-dependent ecosystems of the Great Artesian Basin

    Get PDF
    The Great Artesian Basin of Australia represents one of the largest and deepest basins of freshwater on Earth. Thousands of springs fed by the Basin are scattered across Australia’s arid zone, often representing the sole sources of freshwater for thousands of kilometers. As “islands” in the desert, the springs support endemic fauna and flora that have undergone millions of years of evolution in almost total isolation. Here, we review the current body of knowledge surrounding Great Artesian Basin springs and their significance from ecological, evolutionary, and cultural perspectives using South Australian spring wetlands as a case study. We begin by identifying the status of these springs as critical sources of groundwater, the unique biodiversity they support, and their cultural significance to the Arabana people as Traditional Custodians of the land. We then summarize known threats to the springs and their biota, both exogenous and endogenous, and the potential impacts of such processes. Finally, considering the status of these at-risk habitats as time capsules of biodiversity, we discuss lessons that can be learnt from current conservation and management practices in South Australia. We propose key recommendations for improved biodiversity assessment and monitoring of Great Artesian Basin springs nationwide, including 1) enhanced legal protections for spring biota; 2) increased taxonomic funding and capacity; 3) improved biodiversity monitoring methods, and 4) opportunities for reciprocal knowledge-sharing with Aboriginal peoples when conducting biodiversity research.P. G. Beasley-Hall, N. P. Murphy, R. A. King, N. E. White, B. A. Hedges, S. J. B. Cooper, A. D. Austin, and M. T. Guzi

    Differential transcriptomic responses to heat stress in surface and subterranean diving beetles

    Get PDF
    Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38 °C cf. 42–46 °C), but the genetic basis of this physiological diference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35 °C), as determined by comparative transcriptomics. However, genes involved in these responses difer between species and a far greater number were diferentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only diferentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular fndings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level.Perry G. Beasley-Hall, Terry Bertozzi, Tessa M. Bradford, Charles S. P. Foster, Karl Jones, Simon M.Tierney, William F. Humphreys, Andrew D.Austin, Steven J. B. Coope

    eDNA in subterranean ecosystems: Applications, technical aspects, and future prospects

    Get PDF
    Monitoring of biota is pivotal for the assessment and conservation of ecosystems. Environments worldwide are being continuously and increasingly exposed to multiple adverse impacts, and the accuracy and reliability of the biomonitoring tools that can be employed shape not only the present, but more importantly, the future of entire habitats. The analysis of environmental DNA (eDNA) metabarcoding data provides a quick, affordable, and reliable molecular approach for biodiversity assessments. However, while extensively employed in aquatic and terrestrial surface environments, eDNA-based studies targeting subterranean ecosystems are still uncommon due to the lack of accessibility and the cryptic nature of these environments and their species. Recent advances in genetic and genomic analyses have established a promising framework for shedding new light on subterranean biodiversity and ecology. To address current knowledge and the future use of eDNA methods in groundwaters and caves, this review explores conceptual and technical aspects of the application and its potential in subterranean systems. We briefly introduce subterranean biota and describe the most used traditional sampling techniques. Next, eDNA characteristics, application, and limitations in the subsurface environment are outlined. Last, we provide suggestions on how to overcome caveats and delineate some of the research avenues that will likely shape this field in the near future. We advocate that eDNA analyses, when carefully conducted and ideally combined with conventional sampling techniques, will substantially increase understanding and enable crucial expansion of subterranean community characterisation. Given the importance of groundwater and cave ecosystems for nature and humans, eDNA can bring to the surface essential insights, such as study of ecosystem assemblages and rare species detection, which are critical for the preservation of life below, as well as above, the ground.Mattia SaccĂČ, Michelle T. Guzik, Mieke van der Heyde, Paul Nevill, Steven J.B. Cooper, Andrew D. Austin, Peterson J. Coates, Morten E. Allentoft, Nicole E. Whit

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore