139 research outputs found

    Insomnia and alcohol use as predictors of heartrate variability among veterans

    Get PDF
    "Low heart-rate variability (HRV) is an indicator of autonomic dysfunction. Low HRV has been linked to adverse cardiovascular outcomes. Low HRV has also been implicated in both alcohol use and sleep disorders. HYPOTHESIS: Heavier alcohol use and more severe insomnia will be associated with autonomic dysfunction (low HRV)."--Introduction

    Impact of web-based cognitive behavioral therapy for insomnia on stress, health, mood, cognitive, inflammatory, and neurodegenerative outcomes in rural dementia caregivers: Protocol for the NiteCAPP CARES and NiteCAPP SHARES randomized controlled trial

    Get PDF
    BACKGROUND: Chronic insomnia affects up to 63% of family dementia caregivers. Research suggests that chronic insomnia prompts changes in central stress processing that have downstream negative effects on health and mood, as well as on cognitive, inflammatory, and neurodegenerative functioning. We hypothesize that cognitive behavioral therapy for insomnia (CBT-I) will reverse those downstream effects by improving insomnia and restoring healthy central stress processing. Rural caregivers are particularly vulnerable, but they have limited access to CBT-I; therefore, we developed an accessible digital version using community input (NiteCAPP CARES). OBJECTIVE: This trial will evaluate the acceptability, feasibility, and short-term and long-term effects of NiteCAPP CARES on the sleep and stress mechanisms underlying poor caregiver health and functioning. METHODS: Dyads (n=100) consisting of caregivers with chronic insomnia and their coresiding persons with dementia will be recruited from Columbia and surrounding areas in Missouri, United States. Participant dyads will be randomized to 4 weeks (plus 4 bimonthly booster sessions) of NiteCAPP CARES or a web-based sleep hygiene control (NiteCAPP SHARES). Participants will be assessed at baseline, after treatment, and 6- and 12-month follow-ups. The following assessments will be completed by caregivers: 1 week of actigraphy and daily diaries measuring sleep, Insomnia Severity Index, arousal (heart rate variability), inflammation (blood-derived biomarkers: interleukin-6 and C-reactive protein), neurodegeneration (blood-derived biomarkers: plasma amyloid beta [AÎČ40 and AÎČ42], total tau, and phosphorylated tau [p-tau181 and p-tau217]), cognition (Joggle battery, NIH Toolbox for Assessment of Neurological and Behavioral Function, and Cognitive Failures Questionnaire), stress and burden, health, and mood (depression and anxiety). Persons with dementia will complete 1 week of actigraphy at each time point. RESULTS: Recruitment procedures started in February 2022. All data are expected to be collected by 2026. Full trial results are planned to be published by 2027. Secondary analyses of baseline data will be subsequently published. CONCLUSIONS: This randomized controlled trial tests NiteCAPP CARES, a web-based CBT-I for rural caregivers. The knowledge obtained will address not only what outcomes improve but also how and why they improve and for how long, which will help us to modify NiteCAPP CARES to optimize treatment potency and support future pragmatic testing and dissemination. TRIAL REGISTRATION: ClinicalTrials.gov NCT04896775; https://clinicaltrials.gov/ct2/show/NCT04896775. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/37874

    An Electrochemical Study of Frustrated Lewis Pairs: A Metal-free Route to Hydrogen Oxidation

    Get PDF
    [Image: see text] Frustrated Lewis pairs have found many applications in the heterolytic activation of H(2) and subsequent hydrogenation of small molecules through delivery of the resulting proton and hydride equivalents. Herein, we describe how H(2) can be preactivated using classical frustrated Lewis pair chemistry and combined with in situ nonaqueous electrochemical oxidation of the resulting borohydride. Our approach allows hydrogen to be cleanly converted into two protons and two electrons in situ, and reduces the potential (the required energetic driving force) for nonaqueous H(2) oxidation by 610 mV (117.7 kJ mol(–1)). This significant energy reduction opens routes to the development of nonaqueous hydrogen energy technology

    Continued Use of Exogenic Materials found on Mars as Planetary Research Tools

    Get PDF
    Exogenic materials (meteorites, micrometeorites and chemical tracers) are encountered both serendipitously and as campaign targets during Mars rover terrain traverse and reconnaissance. We advocate the continued study of these materials in-situ when encountered and permitted by extended and new Mars surface missions in the 2023–2032 decade.Whitepaper submitted to the Planetary Science and Astrobiology Decadal Survey 2023-2032. Additional co-authors: Sara Motaghian, Brandi L. Carrier, William H. Farrand, Marc D. Fries, Peter Grindrod, Andrew Langedam, JĂ©rĂ©mie Lasue

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z∌0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z∌0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    • 

    corecore