171 research outputs found

    Linking multi-scale 3D microstructure to potential enhanced natural gas recovery and subsurface CO2 storage for Bowland shale, UK

    Get PDF
    Injection of CO2 into shale reservoirs to enhance gas recovery and simultaneously sequester greenhouse gases is a potential contributor towards the carbon-neutral target. It offers a low-carbon, low-cost, low-waste and large-scale solution during the energy transition period. A precondition to efficient gas storage and flow is a sound understanding of how the shale’s micro-scale impacts on these phenomena. However, the heterogeneous and complex nature of shales limits the understanding of microstructure and pore systems, making feasibility analysis challenging. This study qualitatively and quantitatively investigates the Bowland shale microstructure in 3D at five length scales: artificial fractures at 10–100 mm scale, matrix fabric at 1–10 mm-scale, individual mineral grains and organic matter particles at 100 nm–1 mm scale, macropores and micro-cracks at 10–100 nm scale and organic matter and mineral pores at 1–10 nm-scale. For each feature, the volume fraction variations along the bedding normal orientation, the fractal dimensions and the degrees of anisotropy were analysed at all corresponding scales for a multi-scale heterogeneity analysis. The results are combined with other bulk laboratory measurements, including supercritical CO2 and CH4 adsorption at reservoir conditions, pressure-dependent permeability and nitrogen adsorption pore size distribution, to perform a comprehensive analysis on the storage space and flow pathways. A cross-scale pore size distribution, ranging from 2 nm to 3 mm, was calculated with quantified microstructure. The cumulative porosity is calculated to be 8%. The cumulative surface area is 17.6 m2 g1 . A model of CH4 and CO2 flow pathways and storage with quantified microstructure is presented and discussed. The feasibility of simultaneously enhanced gas recovery and subsurface CO2 storage in Bowland shale, the largest shale gas potential formation in the UK, was assessed based using multi-scale microstructure analysis. The potential is estimated to store 19.0–21.2 Gt CO2 as free molecules, together with 18.3–28.5 Gt CO2 adsorbed onto pore surfaces, implying a theoretical maximum of 47.5–49.5 Gt carbon storage in the current estimate of 38 trillion cubic metres (B1300 trillion cubic feet) of Bowland shale. Simple estimates suggest 6.0–15.8 Gt CO2 may be stored in practice

    Spontaneous emulsification induced by nanoparticle surfactants

    Get PDF
    Microemulsions, mixtures of oil, water, and surfactant, are thermodynamically stable. Unlike conventional emulsions, microemulsions form spontaneously, have a monodisperse droplet size that can be controlled by adjusting the surfactant concentration, and do not degrade with time. To make microemulsions, a judicious choice of surfactant molecules must be made, which significantly limits their potential use. Nanoparticle surfactants, on the other hand, are a promising alternative because the surface chemistry needed to make them bind to a liquid-liquid interface is both well flexible and understood. Here, we derive a thermodynamic model predicting the conditions in which nanoparticle surfactants drive spontaneous emulsification that agrees quantitatively with experiments using Noria nanoparticles. This new class of microemulsions inherits the mechanical, chemical, and optical properties of the nanoparticles used to form them, leading to novel applications

    Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices

    Get PDF
    Systems comprised of immiscible liquids held in non-equilibrium shapes by the interfacial assembly and jamming of nanoparticle−polymer surfactants have significant potential to advance catalysis, chemical separations, energy storage and conversion. Spatially directing functionality within them and coupling processes in both phases remains a challenge. Here, we exploit nanoclay−polymer surfactant assemblies at an oil−water interface to produce a semi-permeable membrane between the liquids, and from them all-liquid fluidic devices with bespoke properties. Flow channels are fabricated using micropatterned 2D substrates and liquid-in-liquid 3D printing. The anionic walls of the device can be functionalized with cationic small molecules, enzymes, and colloidal nanocrystal catalysts. Multi-step chemical transformations can be conducted within the channels under flow, as can selective mass transport across the liquid−liquid interface for in-line separations. These all-liquid systems become automated using pumps, detectors, and control systems, revealing a latent ability for chemical logic and learning

    The Buckling Spectra of Nanoparticle Surfactant Assemblies

    Get PDF
    Fine control over the mechanical properties of thin sheets underpins transcytosis, cell shape, and morphogenesis. Applying these principles to artificial, liquid-based systems has led to reconfigurable materials for soft robotics, actuation, and chemical synthesis. However, progress is limited by a lack of synthetic two-dimensional membranes that exhibit tunable mechanical properties over a comparable range to that seen in nature. Here, we show that the bending modulus, B, of thin assemblies of nanoparticle surfactants (NPSs) at the oil–water interface can be varied continuously from sub-kBT to 106kBT, by varying the ligands and particles that comprise the NPS. We find extensive departure from continuum behavior, including enormous mechanical anisotropy and a power law relation between B and the buckling spectrum width. Our findings provide a platform for shape-changing liquid devices and motivate new theories for the description of thin-film wrinkling

    Supervised exercise training as an adjunctive therapy for venous leg ulcers: study protocol for a randomised controlled trial

    Get PDF
    Background: Venous leg ulcers are common, chronic wounds that are painful and reduce quality of life. Compression therapy is known to assist in the healing of venous leg ulceration. Supervised exercise training that targets an improvement in calf muscle pump function might be a useful adjunctive therapy for enhancing ulcer healing and other aspects of physical and mental health. However, the evidence of exercise for individuals with venous ulcers is sparse. Here, we describe the protocol for a study that aims to assess the feasibility of undertaking a randomised controlled trial of a supervised exercise programme in people who are receiving compression for venous ulceration. Methods/Design: This is a randomised, controlled, assessor-blinded, two-centre, feasibility trial with two parallel groups. Eighty adults who are receiving lower-limb compression for a venous leg ulcer will be randomly assigned to receive usual care (compression only) or usual care plus a 12-week supervised exercise programme. Participants in the exercise group will be invited to undertake three, 60-minute sessions of supervised exercise each week, and each session will involve a combination of treadmill walking, upright cycling and strength and flexibility exercises for the lower limbs. Participants will be assessed before randomisation and 3, 6 and 12 months after randomisation. Primary outcomes include rates of recruitment, retention and adherence. Secondary outcomes include time to ulcer healing, proportion of participants healed, percentage and absolute change in ulcer size, health-related quality of life (EQ-5D-5L and VEINES-QOL/Sym), lower-limb cutaneous microvascular function (laser Doppler flowmetry coupled with iontophoresis) and physical fitness (30-second sit-to-stand test, chair sit and reach test, 6-minute walk test and ankle range of motion). The costs associated with the exercise programme and health-care utilisation will be calculated. We will also complete interviews with a sub-sample of participants to explore their experiences of having a venous ulcer and the acceptability of the exercise intervention and study procedures. Discussion: Data from this study will be used to refine the supervised exercise programme, investigate the acceptability of the intervention and study design and determine the most appropriate outcome measures, thereby providing estimates of the factors needed to design an adequately powered trial across several centres

    The method of educational assessment affects children’s neural processing and performance: behavioural and fMRI Evidence.

    Get PDF
    Standardised educational assessments are now widespread, yet their development has given comparatively more consideration to what to assess than how to optimally assess students’ competencies. Existing evidence from behavioural studies with children and neuroscience studies with adults suggest that the method of assessment may affect neural processing and performance, but current evidence remains limited. To investigate the impact of assessment methods on neural processing and performance in young children, we used functional magnetic resonance imaging to identify and quantify the neural correlates during performance across a range of current approaches to standardised spelling assessment. Results indicated that children’s test performance declined as the cognitive load of assessment method increased. Activation of neural nodes associated with working memory further suggests that this performance decline may be a consequence of a higher cognitive load, rather than the complexity of the content. These findings provide insights into principles of assessment (re)design, to ensure assessment results are an accurate reflection of students’ true levels of competency

    What we talk about when we talk about "global mindset": managerial cognition in multinational corporations

    Get PDF
    Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Ancient origins determine global biogeography of hot and cold desert cyanobacteria

    Get PDF
    Factors governing large-scale spatio-temporal distribution of microorganisms remain unresolved, yet are pivotal to understanding ecosystem value and function. Molecular genetic analyses have focused on the influence of niche and neutral processes in determining spatial patterns without considering the temporal scale. Here, we use temporal phylogenetic analysis calibrated using microfossil data for a globally sampled desert cyanobacterium, Chroococcidiopsis, to investigate spatio-temporal patterns in microbial biogeography and evolution. Multilocus phylogenetic associations were dependent on contemporary climate with no evidence for distance-related patterns. Massively parallel pyrosequencing of environmental samples confirmed that Chroococcidiopsis variants were specific to either hot or cold deserts. Temporally scaled phylogenetic analyses showed no evidence of recent inter-regional gene flow, indicating populations have not shared common ancestry since before the formation of modern continents. These results indicate that global distribution of desert cyanobacteria has not resulted from widespread contemporary dispersal but is an ancient evolutionary legacy. This highlights the importance of considering temporal scales in microbial biogeography

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore