151 research outputs found

    A New Mobility Formula for Spatial Mechanisms

    Get PDF
    ABSTRACT

    The Fire Within: Microbes Inflame Tumors

    Get PDF
    The immune system and the microbiota mutually interact to maintain homeostasis in the intestine. However, components of the microbiota can alter this balance and promote chronic inflammation, promoting intestinal tumor development. We review recent advances in understanding the complex interactions between the microbiota and the innate and adaptive immune systems and discuss their potential to lead us in new directions for understanding cancer biology and treatment

    A Large Polysaccharide Produced by <i>Helicobacter hepaticus</i> Induces an Anti-inflammatory Gene Signature in Macrophages

    Get PDF
    Interactions between the host and its microbiota are of mutual benefit and promote health. Complex molecular pathways underlie this dialog, but the identity of microbe-derived molecules that mediate the mutualistic state remains elusive. Helicobacter hepaticus is a member of the mouse intestinal microbiota that is tolerated by the host. In the absence of an intact IL-10 signaling, H. hepaticus induces an IL-23-driven inflammatory response in the intestine. Here we investigate the interactions between H. hepaticus and host immune cells that may promote mutualism, and the microbe-derived molecule(s) involved. Our results show that H. hepaticus triggers early IL-10 induction in intestinal macrophages and produces a large soluble polysaccharide that activates a specific MSK/CREB-dependent anti-inflammatory and repair gene signature via the receptor TLR2. These data identify a host-bacterial interaction that promotes mutualistic mechanisms at the intestinal interface. Further understanding of this pathway may provide novel prevention and treatment strategies for inflammatory bowel disease.We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics for the generation of the Sequencing data. F.F. was supported by Cancer Research UK (OCRC-DPhil13-FF) and N.E.I. by the Kennedy Trust (KENN 15 16 03). M.M.-L. received a fellowship from the Spanish Ministry of Education, Culture, and Sport. This work was funded by the Wellcome Trust UK (095688/Z/11/Z), an ERC grant (Advanced Grant Ares(2013)3687660), and the Fondation Louis JeantetS

    Insights into deposition of Lower Cretaceous black shales from meager accumulation of organic matter in Albian sediments from ODP site 763, Exmouth Plateau, Northwest Australia

    Full text link
    The amount and type of organic matter present in an exceptionally complete upper Aptian to lower Cenomanian sequence of sediments from ODP site 763 on the Exmouth Plateau has been determined. Organic carbon concentrations average 0.2%. Organic matter is marine in origin, and its production and preservation was low over the ca. 20-million-year interval recorded by this sequence. Because this section was tectonically isolated from mainland Australia in the early Aptian, it better represents global oceanic conditions than the many basin-edge locations in which Albian-age black shales have been found. Formation of the basin-edge black shales evidently resulted from rapid, turbiditic burial of organic matter rather than from enhanced oceanic production or from basin-wide anoxia during the Albian.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47134/1/367_2005_Article_BF02202605.pd

    Reformulation of Theories of Kinematic Synthesis for Planar Dyads and Triads

    No full text
    Methods for solving planar dyads and triads in kinematic synthesis are scattered throughout the literature. A review of and a new compilation of the complex number synthesis method for planar dyads and triads is presented. The motivation of this paper is to formulate uniform solution procedures, pointing out the commonalities of various approaches and emphasizing a consistent method for synthesizing mechanisms defined by specified precision positions. Particular emphasis is given to the solution method using compatibility linkages. The textbook Advanced Mechanism Design Vol II by Erdman and Sandor (1984) only includes a small portion of the available information on this method, and several researchers have added to the basic knowledge in the years since. In some cases, the approach and nomenclature were not consistent, yielding a need to describe and chart a generic formulation and solution procedure for dyads/triads using compatibility linkages and solution structures. The present method offers benefits for solving for exact dyad/triad solutions for complex multiloop mechanisms and could be a promising tool for reducing the computational load of finding complex mechanisms, and for visualizing properties of the solution space

    Reformulation of Theories of Kinematic Synthesis for Planar Dyads and Triads

    No full text
    Methods for solving planar dyads and triads in kinematic synthesis are scattered throughout the literature. A review of and a new compilation of the complex number synthesis method for planar dyads and triads is presented. The motivation of this paper is to formulate uniform solution procedures, pointing out the commonalities of various approaches and emphasizing a consistent method for synthesizing mechanisms defined by specified precision positions. Particular emphasis is given to the solution method using compatibility linkages. The textbook Advanced Mechanism Design Vol II by Erdman and Sandor (1984) only includes a small portion of the available information on this method, and several researchers have added to the basic knowledge in the years since. In some cases, the approach and nomenclature were not consistent, yielding a need to describe and chart a generic formulation and solution procedure for dyads/triads using compatibility linkages and solution structures. The present method offers benefits for solving for exact dyad/triad solutions for complex multiloop mechanisms and could be a promising tool for reducing the computational load of finding complex mechanisms, and for visualizing properties of the solution space

    Dr. George Sandor

    No full text
    corecore