8 research outputs found

    Circulating soluble Fas levels and risk of ovarian cancer

    Get PDF
    BACKGROUND: Dysregulation of apoptosis, specifically overexpression of soluble Fas (sFas), has been proposed to play a role in the development of ovarian cancer. The main objective of the present study was to evaluate serum sFas as a potential biomarker of ovarian cancer risk. METHODS: The association between serum sFas levels and the risk of ovarian cancer was examined in a case-control study nested within three prospective cohorts in New York (USA), Umeå (Sweden), and Milan (Italy). Case subjects were 138 women with primary invasive epithelial ovarian cancer diagnosed between 2 months and 13.2 years after the initial blood donation. Control subjects were 263 women who were free of cancer, and matched the case on cohort, menopausal status, age, and enrollment date. Serum sFas levels were determined using a quantitative sandwich enzyme immunoassay. RESULTS: Serum sFas levels were similar in women subsequently diagnosed with ovarian cancer (median, 6.5 ng/mL; range, 4.4 – 10.2) and in controls (median, 6.8 ng/mL; range, 4.5 – 10.1). Statistically significant trends of increasing serum sFas with age were observed among cases (r = 0.39, p < 0.0001) and controls (r = 0.42, p < 0.0001). Compared to women in the lowest third, women in the highest third of serum sFas were not at increased risk of ovarian cancer after adjustment for potential confounders (odd ratio (OR), 0.87; 95% confidence interval (CI), 0.42 – 1.82). CONCLUSION: The results suggest that serum sFas may not be a suitable marker for identification of women at increased risk of ovarian cancer

    Postmenopausal circulating levels of 2- and 16α-hydroxyestrone and risk of endometrial cancer.

    Get PDF
    Background:It has been suggested that the relative importance of oestrogen-metabolising pathways may affect the risk of oestrogen-dependent tumours including endometrial cancer. One hypothesis is that the 2-hydroxy pathway is protective, whereas the 16α-hydroxy pathway is harmful.Methods:We conducted a case-control study nested within three prospective cohorts to assess whether the circulating 2-hydroxyestrone : 16α-hydroxyestrone (2-OHE1 : 16α-OHE1) ratio is inversely associated with endometrial cancer risk in postmenopausal women. A total of 179 cases and 336 controls, matching cases on cohort, age and date of blood donation, were included. Levels of 2-OHE1 and 16α-OHE1 were measured using a monoclonal antibody-based enzyme assay.Results:Endometrial cancer risk increased with increasing levels of both metabolites, with odds ratios in the top tertiles of 2.4 (95% CI=1.3, 4.6; P(trend)=0.007) for 2-OHE1 and 1.9 (95% CI=1.1, 3.5; P(trend)=0.03) for 16α-OHE1 in analyses adjusting for endometrial cancer risk factors. These associations were attenuated and no longer statistically significant after further adjustment for oestrone or oestradiol levels. No significant association was observed for the 2-OHE1 : 16α-OHE1 ratio.Conclusion:Our results do not support the hypothesis that greater metabolism of oestrogen via the 2-OH pathway, relative to the 16α-OH pathway, protects against endometrial cancer

    Gonadotropins and ovarian cancer

    No full text
    Ovarian epithelial cancer (OEC) accounts for 90% of all ovarian cancers and is the leading cause of death from gynecological cancers in North America and Europe. Despite its clinical significance, the factors that regulate the development and progression of ovarian cancer are among the least understood of all major human malignancies. The two gonadotropins, FSH and LH, are key regulators of ovarian cell functions, and the potential role of gonadotropins in the pathogenesis of ovarian cancer is suggested. Ovarian carcinomas have been found to express specific receptors for gonadotropins. The presence of gonadotropins in ovarian tumor fluid suggests the importance of these factors in the transformation and progression of ovarian cancers as well as being prognostic indicators. Functionally, there is evidence showing a direct action of gonadotropins on ovarian tumor cell growth. This review summarizes the key findings and recent advances in our understanding of these peptide hormones in ovarian cancer development and progression and their role in potential future cancer therapy. We will first discuss the supporting evidence and controversies in the "gonadotropin theory" and the use of animal models for exploring the involvement of gonadotropins in the etiology of ovarian cancer. The role of gonadotropins in regulating the proliferation, survival, and metastasis of OEC is next summarized. Relevant data from ovarian surface epithelium, which is widely believed to be the precursor of OEC, are also described. Finally, we will discuss the clinical applications of gonadotropins in ovarian cancer and the recent progress in drug development. Copyright © 2007 by The Endocrine Society.link_to_subscribed_fulltex

    Gonadotropins and Ovarian Cancer

    No full text
    corecore