1,481 research outputs found

    Mobility of bodies in contact. I. A 2nd-order mobility index formultiple-finger grasps

    Get PDF
    Using a configuration-space approach, the paper develops a 2nd-order mobility theory for rigid bodies in contact. A major component of this theory is a coordinate invariant 2nd-order mobility index for a body, B, in frictionless contact with finger bodies A1,...A k. The index is an integer that captures the inherent mobility of B in an equilibrium grasp due to second order, or surface curvature, effects. It differentiates between grasps which are deemed equivalent by classical 1st-order theories, but are physically different. We further show that 2nd-order effects can be used to lower the effective mobility of a grasped object, and discuss implications of this result for achieving new lower bounds on the number of contacting finger bodies needed to immobilize an object. Physical interpretation and stability analysis of 2nd-order effects are taken up in the companion pape

    Mobility of bodies in contact. II. How forces are generated bycurvature effects

    Get PDF
    For part I, see ibid., p.696-708. The paper considers how forces are produced by compliance and surface curvature effects in systems where an object a is kinematically immobilized to second-order by finger bodies Al,...,Ak. A class of configuration-space based elastic deformation models is introduced. Using these elastic deformation models, it is shown that any object which is kinematically immobilized to first or second-order is also dynamically locally asymptotically stable with respect to perturbations. Moreover, it is shown that for preloaded grasps kinematic immobility implies that the stiffness matrix of the grasp is positive definite. The stability result provides physical justification for using second-order effects for purposes of immobilization in practical applications. Simulations illustrate the concepts

    The Stability of Heavy Objects with Multiple Contacts

    Get PDF
    In both robot grasping and robot locomotion, we wish to hold objects stably in the presence of gravity. We present a derivation of second-order stability conditions for a supported heavy object, employing the tool of Stratified Morse theory. We then apply these general results to the case of objects in the plane

    Constructing minimum deflection fixture arrangements using frame invariant norms

    Get PDF
    This paper describes a fixture planning method that minimizes object deflection under external loads. The method takes into account the natural compliance of the contacting bodies and applies to two-dimensional and three-dimensional quasirigid bodies. The fixturing method is based on a quality measure that characterizes the deflection of a fixtured object in response to unit magnitude wrenches. The object deflection measure is defined in terms of frame-invariant rigid body velocity and wrench norms and is therefore frame invariant. The object deflection measure is applied to the planning of optimal fixture arrangements of polygonal objects. We describe minimum-deflection fixturing algorithms for these objects, and make qualitative observations on the optimal arrangements generated by the algorithms. Concrete examples illustrate the minimum deflection fixturing method. Note to Practitioners-During fixturing, a workpiece needs to not only be stable against external perturbations, but must also stay within a specified tolerance in response to machining or assembly forces. This paper describes a fixture planning approach that minimizes object deflection under applied work loads. The paper describes how to take local material deformation effects into account, using a generic quasirigid contact model. Practical algorithms that compute the optimal fixturing arrangements of polygonal workpieces are described and examples are then presented

    Experiments in fixturing mechanics

    Get PDF
    This paper describes an experimental fixturing system wherein fixel reaction forces, workpiece loading, and workpiece displacements are measured during simulated fixturing operations. The system's configuration, its measurement principles, and tests to characterize its performance are summarized. This system is used to experimentally determine the relationship between workpiece displacement and variations in fixed preload force or workpiece loading. We compare the results against standard theories, and conclude that commonly used linear spring models do not accurately predict workpiece displacements, while a non-linear compliance model provides better predictive behavior

    A stiffness-based quality measure for compliant grasps and fixtures

    Get PDF
    This paper presents a systematic approach to quantifying the effectiveness of compliant grasps and fixtures of an object. The approach is physically motivated and applies to the grasping of two- and three-dimensional objects by any number of fingers. The approach is based on a characterization of the frame-invariant features of a grasp or fixture stiffness matrix. In particular, we define a set of frame-invariant characteristic stiffness parameters, and provide physical and geometric interpretation for these parameters. Using a physically meaningful scheme to make the rotational and translational stiffness parameters comparable, we define a frame-invariant quality measure, which we call the stiffness quality measure. An example of a frictional grasp illustrates the effectiveness of the quality measure. We then consider the optimal grasping of frictionless polygonal objects by three and four fingers. Such frictionless grasps are useful in high-load fixturing applications, and their relative simplicity allows an efficient computation of the globally optimal finger arrangement. We compute the optimal finger arrangement in several examples, and use these examples to discuss properties that characterize the stiffness quality measure

    Enhancing Sensor Measurements through Wide Baseline Stereo Images

    Get PDF
    In this paper, we suggest an algorithm to enhance the accuracy of sensor measurements representing camera parameters. The process proposed is based solely on a pair of wide baseline (or sparse view) images. We use the so-called JUDOCA operator to extract junctions. This operator produces junctions in terms of locations as well as orientations. Such an information is used to estimate an affine transformation matrix, which is used to guide a variance normalized correlation process that produces a set of possible matches. The fundamental matrix can be easily estimated using the so-called RANSAC scheme. Consequently, the essential matrix can be derived given the available calibration matrix. The essential matrix is then decomposed using Singular Value Decomposition. In addition to a translation vector, this decomposition results in a rotation matrix with accurate rotation angles involved. Mathematical derivation is done to extract angles from the rotation matrix and express them in terms of different rotation systems

    PCODE: an efficient and reliable collective communication protocol for unreliable broadcast domain

    Get PDF
    Existing programming environments for clusters are typically built on top of a point-to-point communication layer (send and receive) over local area networks (LANs) and, as a result, suffer from poor performance in the collective communication part. For example, a broadcast that is implemented using a TCP/IP protocol (which is a point-to-point protocol) over a LAN is obviously inefficient as it is not utilizing the fact that the LAN is a broadcast medium. We have observed that the main difference between a distributed computing paradigm and a message passing parallel computing paradigm is that, in a distributed environment the activity of every processor is independent while in a parallel environment the collection of the user-communication layers in the processors can be modeled as a single global program. We have formalized the requirements by defining the notion of a correct global program. This notion provides a precise specification of the interface between the transport layer and the user-communication layer. We have developed PCODE, a new communication protocol that is driven by a global program and proved its correctness. We have implemented the PCODE protocol on a collection of IBM RS/6000 workstations and on a collection of Silicon Graphics Indigo workstations, both communicating via UDP broadcast. The experimental results we obtained indicate that the performance advantage of PCODE over the current point-to-point approach (TCP) can be as high as an order of magnitude on a cluster of 16 workstations

    COVID 19 Cure Technique

    Get PDF
    The cure presents in this study is course of techniques depend on three methods to neutralize the virus threat’s in both sides to prevent it from replication and mutation as the principle acknowledge the speed time of recovery and show the weakness parts in the virus itself by using effective strategy. The cure include three specific procedure first step is to attack both infected cells and the virus molecules with plasma represented in ionic treatment by ionizing the air inside lung and allow the Zinc particles to attack the infected cells membrane which diffused in the body, second step supply and stimulate the immune system in order to complete the attack of the virus by changing the environment required for replication then destroy the damaged cells in order to force the virus to shrink finally the last step is to evacuate the body from the trash of the virus by using organic antioxidants plants help in extract mucus of dead viruses that technique is highly recommended to dismiss the dead virus bodies outside the patients and that will help to kill the virus and avoid it’s side effects in the long term as it is not confirmed that the virus mutate to latency stage then back to attack the body again specially there is no evidence for the full recovery of the patients as the tests done after a while and some of them return to positive results again which lead to some of them suffering from the virus again after recovery in addition to the randomly behavior of the virus that has been shown in the European countries unlike the Chinese virus which put the world in obstacle of speed mutation and that is so dangerous if we put in our consideration the huge numbers of the infected and dead persons, the strategy strongly remark the weakness points in the virus in order to neutralize it even in the late stages for the patients who suffering from immunity issues as the benefits from Cure can recover the actual infected and realistic for the numbers of the persons infected unlike the vaccine that required to be injected for billions of people
    corecore