927 research outputs found
A Holder Continuous Nowhere Improvable Function with Derivative Singular Distribution
We present a class of functions in which is variant
of the Knopp class of nowhere differentiable functions. We derive estimates
which establish \mathcal{K} \sub C^{0,\al}(\R) for 0<\al<1 but no is pointwise anywhere improvable to C^{0,\be} for any \be>\al.
In particular, all 's are nowhere differentiable with derivatives singular
distributions. furnishes explicit realizations of the functional
analytic result of Berezhnoi.
Recently, the author and simulteously others laid the foundations of
Vector-Valued Calculus of Variations in (Katzourakis), of
-Extremal Quasiconformal maps (Capogna and Raich, Katzourakis) and of
Optimal Lipschitz Extensions of maps (Sheffield and Smart). The "Euler-Lagrange
PDE" of Calculus of Variations in is the nonlinear nondivergence
form Aronsson PDE with as special case the -Laplacian.
Using , we construct singular solutions for these PDEs. In the
scalar case, we partially answered the open regularity problem of
Viscosity Solutions to Aronsson's PDE (Katzourakis). In the vector case, the
solutions can not be rigorously interpreted by existing PDE theories and
justify our new theory of Contact solutions for fully nonlinear systems
(Katzourakis). Validity of arguments of our new theory and failure of classical
approaches both rely on the properties of .Comment: 5 figures, accepted to SeMA Journal (2012), to appea
The eigenvalue problem for the â-Bilaplacian
We consider the problem of finding and describing minimisers of the Rayleigh quotient
Îâ:=infuâW2,â(Ω)â{0}â„Îuâ„Lâ(Ω)â„uâ„Lâ(Ω),
Îâ:=infuâW2,â(Ω)â{0}âÎuâLâ(Ω)âuâLâ(Ω),
where ΩâRnΩâRn is a bounded C1,1C1,1 domain and W2,â(Ω)W2,â(Ω) is a class of weakly twice differentiable functions satisfying either u=0u=0 on âΩâΩ or u=|Du|=0u=|Du|=0 on âΩâΩ . Our first main result, obtained through approximation by LpLp -problems as pââpââ , is the existence of a minimiser uââW2,â(Ω)uââW2,â(Ω) satisfying
{ÎuââÎâSgn(fâ)Îfâ=ÎŒâ a.e. in Ω, in DâČ(Ω),
{ÎuââÎâSgn(fâ) a.e. in Ω,Îfâ=ÎŒâ in DâČ(Ω),
for some fââL1(Ω)â©BVloc(Ω)fââL1(Ω)â©BVloc(Ω) and a measure ÎŒââM(Ω)ÎŒââM(Ω) , for either choice of boundary conditions. Here Sgn is the multi-valued sign function. We also study the dependence of the eigenvalue ÎâÎâ on the domain, establishing the validity of a FaberâKrahn type inequality: among all C1,1C1,1 domains with fixed measure, the ball is a strict minimiser of ΩâŠÎâ(Ω)ΩâŠÎâ(Ω) . This result is shown to hold true for either choice of boundary conditions and in every dimension
Boron Isotope Effect in Superconducting MgB
We report the preparation method of, and boron isotope effect for MgB, a
new binary intermetallic superconductor with a remarkably high superconducting
transition temperature (B) = 40.2 K. Measurements of both
temperature dependent magnetization and specific heat reveal a 1.0 K shift in
between MgB and MgB. Whereas such a high transition
temperature might imply exotic coupling mechanisms, the boron isotope effect in
MgB is consistent with the material being a phonon-mediated BCS
superconductor.Comment: One figure and related discussion adde
First search for gravitational waves from the youngest known neutron star
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia
A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser
Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz
and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and
for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search
frequencies, we set 95% confidence upper limits of (0.7â1.2) Ă 10^(â24) on the intrinsic gravitational-wave
strain, (0.4â4) Ă 10^(â4) on the equatorial ellipticity of the neutron star, and 0.005â0.14 on the amplitude of
r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy
conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes.
This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
Directional limits on persistent gravitational waves using LIGO S5 science data
The gravitational-wave (GW) sky may include nearby pointlike sources as well
as astrophysical and cosmological stochastic backgrounds. Since the relative
strength and angular distribution of the many possible sources of GWs are not
well constrained, searches for GW signals must be performed in a
model-independent way. To that end we perform two directional searches for
persistent GWs using data from the LIGO S5 science run: one optimized for
pointlike sources and one for arbitrary extended sources. The latter result is
the first of its kind. Finding no evidence to support the detection of GWs, we
present 90% confidence level (CL) upper-limit maps of GW strain power with
typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2
Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on
pointlike sources constitute a factor of 30 improvement over the previous best
limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain
from interesting targets including Sco X-1, SN1987A and the Galactic Center as
low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These
limits are the most constraining to date and constitute a factor of 5
improvement over the previous best limits.Comment: 10 pages, 4 figure
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
- âŠ