31 research outputs found

    Calpain restrains the stem cells compartment in breast cancer

    Get PDF
    CAPNS1 is essential for the stability and function of ubiquitous CAPN1 and CAPN2. Calpain modulates by proteolytic cleavage many cellular substrates and its activity is often deregulated in cancer cells, therefore calpain inhibition has been proposed as a therapeutical strategy for a number of malignancies. Here we show that CAPNS1 depletion is coupled to impairment of MCF7 and MCF10AT cell lines growth on plate and defective architecture of mammary acini derived from MCF10A cells. In soft agar CAPNS1 depletion leads to cell growth increase in MCF7, and decrease in MCF10AT cells. In both MCF7 and MCF10AT, CAPNS1 depletion leads to the enlargement of the stem cell compartment, as demonstrated by mammosphere formation assays and evaluation of stem cell markers by means of FACS and western blot analysis. Accordingly, activation of calpain by thapsigargin treatment leads to a decrease in the stem cell reservoir. The expansion of the cancer stem cell population in CAPNS1 depleted cells is coupled to a defective shift from symmetric to asymmetric division during mammosphere growth coupled to a decrease in NUMB protein level

    Oxidative Stress in Cancer

    Get PDF
    Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism

    Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods

    Get PDF
    As the methodologies available for the detection of positive selection from genomic data vary in terms of assumptions and execution, weak correlations are expected among them. However, if there is any given signal that is consistently supported across different methodologies, it is strong evidence that the locus has been under past selection. In this paper, a straightforward frequentist approach based on the Stouffer Method to combine P-values across different tests for evidence of recent positive selection in common variations, as well as strategies for extracting biological information from the detected signals, were described and applied to high density single nucleotide polymorphism (SNP) data generated from dairy and beef cattle (taurine and indicine). The ancestral Bovinae allele state of over 440,000 SNP is also reported. Using this combination of methods, highly significant (P<3.17×10(-7)) population-specific sweeps pointing out to candidate genes and pathways that may be involved in beef and dairy production were identified. The most significant signal was found in the Cornichon homolog 3 gene (CNIH3) in Brown Swiss (P = 3.82×10(-12)), and may be involved in the regulation of pre-ovulatory luteinizing hormone surge. Other putative pathways under selection are the glucolysis/gluconeogenesis, transcription machinery and chemokine/cytokine activity in Angus; calpain-calpastatin system and ribosome biogenesis in Brown Swiss; and gangliosides deposition in milk fat globules in Gyr. The composite method, combined with the strategies applied to retrieve functional information, may be a useful tool for surveying genome-wide selective sweeps and providing insights in to the source of selection

    Detection of food-borne pathogens with DNA arrays on disk

    Full text link
    A DNA oligonucleotide array for duplex pathogen detection on a DVD platform is developed. The assay involves hybridization of PCR products and optical detection using compact disc technology. Different DNA array constructions for attachment of synthetic oligonucleotides on to DVD surface are evaluated, finding that streptavidin-biotin coupling method yielded the highest sensitivity in combination with enzymatic signal amplification. Issues of importance for the DNA array construction such immobilized probes design, PCR product labeling strategy and composition of the hybridization buffer were addressed. The methodology was proved scoring single nucleotide polymorphisms with high selectivity. The assay capability was also demonstrated by the identification of two pathogenic microorganisms in powder milk samples. In fifty minutes, the DVD-array system identifies Salmonella spp. and Cronobacter spp. (previously named Enterobacter sakazakii) precise and simultaneously with a sensitivity of 100 and 102 cfu/mL, respectively, in infant milk. Results were in good agreement with those obtained by quantitative real-time PCR. © 2012 Elsevier B.V. All rights reserved.This work was funded by the projects PATSENS, PSE-010000-2008-6 (Spanish Government and EU FEDER funds), FEDER CTQ2010-15943 (CICYT, Spain), PROMETEO 2010/008 and ACOMP/2012/158 (Generalitat Valenciana). The Spanish MEC provided T.A-C with a grant for her PhD studies.Arnandis Chover, T.; Morais, S.; Tortajada-Genaro, LA.; Puchades, R.; Maquieira Catala, Á.; Berganza, J.; Olabarria, G. (2012). Detection of food-borne pathogens with DNA arrays on disk. Talanta. 101:405-412. https://doi.org/10.1016/j.talanta.2012.09.049S40541210
    corecore