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Abstract: 
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in 

apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting 

transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, 

tumor cells modify sulfur-based metabolism, NADPH generation and the activity of antioxidant 

transcription factors. During initiation, genetic changes enable cell survival under high ROS levels 

by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate 

pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by 

increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine 

and folate metabolism. 

1. Introduction
Oxidative stress, defined as a relative excess of reactive oxygen species (ROS) when compared 

with antioxidants, has been linked to neurodegenerative disease, cardiovascular disease, diabetes 

mellitus and many other pathologies (Sies, 2015). These associations emphasise that a balance 

must be struck between the relative abundance of ROS and antioxidants. Cells possess complex 

biochemical and genetic mechanisms to maintain such a balance, and it is clear that their 

perturbation can have profound pathophysiological consequences. 
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Cancer cells exhibit aberrant redox homeostasis, but whilst ROS are pro-tumorigenic, high ROS 

levels are cytotoxic (Reczek et al., 2017). Specifically, hyperproliferation of tumor cells is 

accompanied by high ROS production, but they are adapted to thrive under conditions where this 

oxidative burden pushes redox balance away from a reduced state; tumor cells achieve this by 

increasing their antioxidant status to optimise ROS-driven proliferation, whilst at the same time 

avoiding ROS thresholds that would trigger senescence, apoptosis or ferroptosis (Dodson et al., 

2019; Redza-Dutordoir and Averill-Bates, 2016). Since realignment of redox underpins how tumor 

cells tolerate high ROS levels, emphasis has been placed in this review on the biochemistry of 

reduced glutathione (GSH, L-γ-glutamyl-L-cysteinyl-glycine), thioredoxins (TXN1 and TXN2) and 

NADPH, and the mechanisms that govern their abundance under normal physiological conditions 

and during the initiation, progression and metastatic stages of cancer, as well as post-therapy 

recurrence. We also discuss heterogeneity inherent in the late stages of the evolution of cancer that 

may explain the apparently anomalous effects of antioxidants on the development and metastatic 

spread of different types of malignant disease. 

 

2. Time-dependent cellular adaptations to oxidative stress in normal cells 
Cells generate ROS and reactive nitrogen species (RNS) as an unavoidable consequence of 

metabolism, and whilst they are potentially harmful, these species are used as intracellular signaling 

molecules (see Box 1) (Halliwell and Gutteridge, 2015). To ensure ROS/RNS signaling processes 

are maintained and oxidative damage avoided, cells possess an array of antioxidant systems (Box 
2). Besides those direct-acting antioxidants, cells are also equipped with indirect-acting antioxidant 

systems that either limit the formation of ROS/RNS or detoxify the reactive metabolites they generate 

(Box 3). A disproportionate increase in ROS/RNS relative to antioxidant capacity, is referred to as 

oxidative stress, and this is countered by the cell in various ways. In this context, GSH and TXN 

(Box 4) play central roles in countering oxidative stress, but their ability to do so is underpinned by 

NADPH which maintains both in a reduced state (Box 5). 

Cells adapt to oxidative stress in the short-term by metabolic reprograming and in the longer 

term by genetic reprograming. Upon acute exposure to ROS, NADPH production by G6PD plays a 

pivotal role in mitigating oxidative stress. Upon experiencing non-toxic threshold levels of H2O2, cells 

activate G6PD and reroute glucose metabolism from glycolysis through the oxidative arm of the PPP 

towards nucleotide synthesis, thereby allowing increased reduction of NADP+ to NADPH (Kuehne et 

al., 2015). This rapid metabolic rerouting is due to alleviation of the negative feedback regulation of 

G6PD activity exerted by NADPH, which occurs constitutively under non-stressed conditions, and is 

a consequence of acute depletion of NADPH caused by ROS (Dick and Ralser, 2015). In turn, the 

increase in NADPH enables GSR1 and TXNRD1/2 to augment the GSH- and TXN1/2-based 

antioxidant systems, subduing ROS to homeostatic levels. 
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      When exposed to non-toxic doses of H2O2 for modest periods (e.g. 15 min), cells employ redox 

switches (see Box 6) in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and pyruvate kinase 

M2 (PKM2) to block glycolysis and increase glucose catabolism via the PPP, causing accumulation 

of upper glycolysis intermediates, a spill-over of glucose-6-phosphate into the oxidative arm of the 

PPP, and increased production of NADPH by G6PD to ameliorate oxidative stress (Figure 1): the 

redox switch in GAPDH involves Cys-152, and in PKM2 involves Cys-358. Under these conditions, 

GAPDH activity can be further increased by phosphorylation by ataxia-telangiectasia mutated 

(ATM), as a consequence of formation of an intermolecular disulfide bridge in ATM at Cys-2991, 

which also increases flux through the PPP (Cosentino et al., 2011). The effects of ROS on GAPDH, 

PKM2 and G6PD activities are likely co-ordinated with oxidation of Cys residues in at least six protein 

subunits within complexes I, III and IV of the mitochondrial electron transport chain that contain Fe-

S clusters, resulting in decreased O2 consumption and a decrease in ROS production (van der Reest 

et al., 2018). Acute oxidative stress may also inhibit phosphatase and tensin homologue (PTEN), by 

oxidising Cys-124, and in so doing activate PKB/Akt by PI3K, upregulating antioxidant gene 

expression and increasing cell survival (Sakamoto et al., 2009; van der Reest et al., 2018). 

      A NO−based protective mechanism against acute oxidative stress has been reported that 

entails increased flux through the PPP resulting from S-nitrosylation of PKM2 (Zhou et al., 2019). In 

this case, NOS3 activity increases in proximal tubule endothelial cells upon acute kidney injury, 

causing accumulation of S-nitroso coenzyme A (SNO-CoA) and S-nitrosylation of PKM2 at Cys-423 

and Cys-424, which results in inhibition of the kinase, diversion of glucose metabolism through the 

PPP, increased NADPH production and diminished ROS.  

      In contrast to acute oxidative stress, which can largely be resolved by metabolic rerouting, 

adaptation to chronic oxidative stress involves activation of genetic programs. In the short-to-medium 

time-span, oxidative stress can alter the abundance and/or subcellular distribution of hypoxia-

inducible factor-1α (HIF-1α) that leads to metabolic reprogramming. Traditionally this involves 

hypoxia and oxidation of Cys-326 in PHD2 that stabilises HIF-1α and results in transcriptional 

changes that lead to a switch from glucose oxidation to glycolysis (Lee et al., 2016). Importantly, in 

chronic oxidative stress models that involve accumulation of endogenous electrophiles or depletion 

of GSH/TXN, adaptation entails upregulation of antioxidant genes (Blackburn et al., 2006; Chen et 

al., 2016; Patterson et al., 2013; Zheng et al., 2015). 

 

3. Molecular basis for adaptation to oxidative stress 
3a) Transcription factors that control intracellular redox 

It is established that many transcription factors, including activator protein-1 (AP-1), HIF-1α, heat 

shock factor 1 (HSF1), nuclear factor-κB (NF-κB), nuclear factor-erythroid 2 p45-related factor 2 

(NRF2), and tumor protein p53 (TP53, or Trp53 in mice), are activated by ROS and regulate the 
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redox status of cells (reviewed in (Marinho et al., 2014)). Whilst these transcription factors have all 

been implicated in carcinogenesis, the activities of forkhead box, class O (FOXO) and peroxisome 

proliferator-activated receptor-gamma coactivator-1α (PGC-1α), also increased by ROS (Brown and 

Webb, 2018; Guo et al., 2018), contribute to redox status and are implicated in carcinogenesis. 

Moreover, BTB and CNC homology 1 (BACH1), a repressor of the oxidative stress response that 

antagonises NRF2 (Tan et al., 2013), is itself inhibited by pro-oxidants and also influences cancer 

evolution, including metastasis (Zhang et al., 2018a).  

 

3b) Stratified responses of antioxidant transcription factors 
The extent to which individual members of the above network of antioxidant transcriptions are 

differentially activated by oxidative stress is uncertain, though it is improbable that all are activated 

simultaneously. Rather, different transcription factors likely respond to distinct threshold levels of 

ROS/RNS, in a concentration- and/or time-dependent manner that is probably attuned to the 

coexistence of metabolic stress, proteotoxic stress, hypoxia, inflammation or DNA damage. Because 

it regulates a wide spectrum of antioxidant and detoxification genes, NRF2 provides a principal 

inducible defence against oxidative stress (Hayes and Dinkova-Kostova, 2014; Sies et al., 2017), 

but whether it is more readily activated by ROS than other redox-responsive transcription factors is 

unclear. Nevertheless, assuming NRF2-directed gene expression provides an initial means to adapt 

to oxidative stress, it may offer a type of ‘floodgate’ protection, analogous to that proposed for PRDXs 

(see Box 7), in which only once the antioxidant genes induced by NRF2 upon oxidative stress are 

overwhelmed at a particular ROS threshold are the other antioxidant transcription factors within the 

network activated (Figure 2). A modification of the ‘floodgate’ model would include induction by 

NRF2 of Krüpple-like factor 9 (KLF9), which is a DNA-binding, transcriptional regulator that 

downregulates the antioxidant genes TXNRD2 and PRDX6 (Chhunchha et al., 2019; Zucker et al., 

2014), and induction of KLF9 would shut-down antioxidant defences when ROS levels exceed a 

certain threshold or duration. In this scenario, other members of the network would only be activated 

when the antioxidant capacity of NRF2-target genes is exceeded - or when KLF9 is induced. Once 

NRF2-directed floodgate defences have been breached, the question of whether individual 

antioxidant transcription factors are activated in a stratified or coordinated manner is uncertain. 

A ‘hierarchical’ or ‘rheostat’ response to oxidative stress has been proposed that places NRF2 

as a first-tier defence (activated by modest increases of ROS/RNS), with AP-1 and NF-κB as a 

second-tier defence (activated by higher ROS/RNS levels), and a third and final tier involving 

activation of apoptosis (Xiao et al., 2003). Within this model, it is plausible that FOXO, PGC-1α and 

HIF-1α are activated by higher levels of ROS/RNS than are required to activate NRF2, and lower 

levels of ROS/RNS than required to stimulate apoptosis, but where they feature relative to AP-1 and 
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NF-κB is a matter of conjecture. It can also be argued that TP53, which controls cell cycle arrest, 

senescence and apoptosis, provides a ‘final’ response to excessive ROS levels. 

Little has been reported about cross-talk between antioxidant transcription factors. Cross-talk 

between NRF2 and TP53 has been revealed using a bacterial artificial chromosome−GFP platform 

with quantitative high-throughput confocal microscopy to examine responses to oxidative stress 

caused by diethylmaleate and DNA damage caused by etoposide (Hiemstra et al., 2017). This is an 

approach that should be extended to define thresholds for various stressors that activate members 

of the antioxidant transcription factor network and tipping points for adaptation to stress. In this 

context, it should be noted that NRF2 regulates the expression of HSF1 (Paul et al., 2018) and 

overexpression of the NF-κB p65/RelA subunit antagonises NRF2 by depriving it of CBP and 

recruiting histone deacetylase 3 (Liu et al., 2008) and that when oxidative stress is sufficient to cause 

DNA damage, the ensuing activation of TP53 results in antagonism of NRF2, thereby heightening 

oxidative stress and facilitating apoptosis (Faraonio et al., 2006); together, these findings suggest 

NRF2 is downregulated by oxidative stress sufficient to cause inflammation and pro-apoptotic 

signaling. It has also been reported that FOXO transcription factors can interact with PGC-1α and 

TP53 in a stimulus-dependent fashion (Eijkelenboom and Burgering, 2013). 

 

3c) The antioxidant transcription factor network 
Members of this network each controls a distinct spectrum of antioxidant genes (Table 1), and each 

is implicated in tumorigenesis in different ways. 

NRF2 is the principal regulator of intracellular redox homeostasis and transactivates genes as a 

heterodimer with a small musculoaponeurotic fibrosarcoma (MAF) protein. As shown in Table 1, 

NRF2 transactivates a wide spectrum of antioxidant genes upon exposure to ROS or soft 

electrophiles (Hayes and Dinkova-Kostova, 2014; Hayes JD; Yamamoto et al., 2018). An interesting 

feature of NRF2 is that it does not regulate SOD1 or SOD2, and so its activation will not directly 

quench O2
–-based redox signaling. It is not clear whether NRF2 can repress pro-oxidant genes, but 

it has been reported to downregulate NOX4 and, through its ability to repress the expression of 

genes encoding interleukin-1β (IL-1β) and IL-6, along with induction of the gene encoding 

peroxisome proliferator-activated receptor gamma (PPARγ), NRF2 dampens the levels of ROS 

formed during inflammation (Kobayashi et al., 2016). NRF2 mediates the protective effects of many 

cancer chemopreventive agents but it is also thought to support the latter stages of tumorigenesis 

(Rojo de la Vega et al., 2018). Its upregulation in cancer cells can increase serine biosynthesis 

through its ability to positively control ATF4-mediated induction of phosphoglycerate dehydrogenase, 

phosphohydroxythreonine aminotransferase, phosphoserine phosphatase and SHMT2 that support 

GSH and nucleotide synthesis (DeNicola et al., 2015), though it should be recognised that ATF4 is 

activated by the integrated stress response that will likely be upregulated during tumorigenesis. 
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Based on a computational method that analyses patterns of mutational signatures in cancer, 

Stephen Elledge and colleagues have classed the gene encoding NRF2 (i.e. NFE2L2) as an 

oncogene, and that encoding its principal repressor Kelch-like ECH-associated protein 1 (i.e. 

KEAP1) as a tumor suppressor (Davoli et al., 2013). 

BACH1 binds DNA as a heterodimer with small MAF proteins, and is best known for its ability to 

repress HMOX1, and to a substantially lesser extent other antioxidant genes (MacLeod et al., 2009; 

Nishizawa et al., 2020). Upon binding heme and exposure to pro-oxidant agents, BACH1 is 

degraded, enabling NRF2 to transactivate genes it represses. Besides repression of antioxidant 

genes, BACH1 contributes positively to the expression of genes for metalloproteinase-1 (MMP-1) 

and CXCR4, and therefore supports metastatic disease (Liang et al., 2012). Moreover, BACH1 

directs metabolic reprogramming by increasing expression of hexokinase 2 and Gapdh (Wiel et al., 

2019) and suppresses expression of mitochondrial electron transport chain genes (Lee et al., 2019) 

increasing glycolysis and supressing mitochondrial TCA metabolism, each hallmarks of cancer. 

AP-1 represents a family of dimeric transcription factors comprising combinations of Jun (c-Jun, 

JunB, JunD), Fos (c-Fos, FosB, Fra-1, Fra-2), ATF (ATFa, ATF2, ATF3, ATF4), JDP (JDP-1, JDP-

2) and MAF (c-MAF, MAFA, MAFB, MAFF, MAFG, MAFK) (Bejjani et al., 2019). Table 1 shows they 

exert antioxidant effects through induction of genes that scavenge ROS, synthesise GSH, suppress 

levels of free iron and metabolise pro-oxidant xenobiotics (Glorieux et al., 2016; Soriano et al., 2009). 

AP-1 members include oncogenes that can transform cells and are involved in cell proliferation, 

whilst others inhibit tumorigenesis, suggesting their effects are context dependent (Eferl and 

Wagner, 2003; Shaulian and Karin, 2001). 

FOXO forkhead motif-containing FOXO1, FOXO3, FOXO4 and FOXO6 support cellular homeostasis 

in various ways (Eijkelenboom and Burgering, 2013). They augment antioxidant status by inducing 

genes that eliminate ROS and improve mitochondrial redox and suppress levels of free transition 

metal ions by increasing levels of metallothionein and ceruloplasmin (Klotz et al., 2015). Besides 

responding to ROS, FOXOs also respond to nutrients and regulate genes involved in cell cycle arrest 

such as GADD45 and apoptosis (Eijkelenboom and Burgering, 2013). In cancer cells, FOXO can 

induce genes for MMP-9 and MMP-13 and may therefore aid epithelial-to-mesenchymal transition 

(EMT) required for metastatic spread (Liou and Storz, 2010). 

PGC-1α transcriptional coactivator is a master regulator of mitochondrial biogenesis. It increases 

oxidative phosphorylation by activating PPARγ and nuclear respiratory factors 1 and 2, also 

increases antioxidant capacity (Table 1) as well as decreasing mitochondrial production of ROS by 

activating uncoupling protein-1 and -2, and stimulating mitochondrial biogenesis (Guo et al., 2018; 

Kaarniranta et al., 2018; St-Pierre et al., 2006; Valle et al., 2005). In cancer, activation of PGC-1α 

can exert both positive and negative effects in that it supports survival and metabolic flexibility of 

tumor cells whilst also exhibiting anti-metastatic effects through inhibition of EMT (Gravel, 2018). 
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HIF-1α regulates expression of GSH-based antioxidant genes under hypoxic conditions (Lu et al., 

2015; Stegen et al., 2016). It also exerts antioxidant effects by inducing genes for lactate 

dehydrogenase and pyruvate dehydrogenase kinase 1, the latter of which inhibits pyruvate 

dehydrogenase; together, these enzymes direct glucose catabolism from the TCA cycle to lactate, 

thereby decreasing mitochondrial ROS production (Samanta and Semenza, 2017). Activation of HIF-

1α increases expression of proangiogenic genes such as that for vascular endothelial growth factor 

(VGEF), which is associated with metastatic disease (Semenza, 2012). 

HSF1 responds to stressors that cause protein misfolding by inducing genes encoding heat shock 

protein chaperones. However, it also responds to ROS through Cys-35 and Cys-105 (Ahn and 

Thiele, 2003), and induces antioxidant genes (Table 1) (Kovacs et al., 2019). HSF1 upregulation 

commonly occurs as a means of protecting tumor cells against diverse stresses (Dong et al., 2019).  

NF-κB represents a family of transcription factors that comprise heterodimer or homodimer 

combinations of p50, p52, p65/RelA, RelB and c-Rel subunits, which provide an inducible first-line 

defence against infection and other damaging agents (Perkins, 2007). Although NF-κB orchestrates 

an adaptive response to eradicate invading pathogens, by inducing expression of cytokines, 

chemokines and receptors, and to repair tissue damage, it also regulates expression of antioxidant 

genes (Morgan and Liu, 2011). However, as NF-κB regulates expression of the prooxidant genes 

CYP2E1, NOX2, XOR, NOS2, COX2, ALOX5 and ALOX12 ((Morgan and Liu, 2011); 

http://www.bu.edu/nf-kb/gene-resourses/target-genes/) it may contribute little to adaptation to 

oxidative stress. Constitutive activation of NF-κB is observed in many cancers, where it promotes 

the survival, proliferation and metastasis of tumor cells by increasing expression of anti-apoptotic 

genes, cyclins, MMPs, cell adhesion genes and pro-angiogenic genes (Perkins, 2012). It also 

favours a metabolic switch to glycolysis and controls the tumor microenvironment by directing the 

pro-tumorigenic actions of immune cells (Taniguchi and Karin, 2018). 

TP53 increases antioxidant status by transactivating genes encoding enzymes/proteins that 

scavenge ROS, support GSH synthesis, increase NADPH production, detoxify xenobiotics and 

trans-repress genes for the pro-oxidant enzymes NOS2 and COX2 (Maillet and Pervaiz, 2012; 

Nguyen et al., 2018). The increase in production of NADPH affected by TP53 arises through 

upregulation of TP53-induced glycolysis and apoptosis regulator (TIGAR), which acts as a fructose-

2,6-bisphosphatase and thereby decreases glycolysis and increases flux through the oxidative arm 

of the PPP (Cheung et al., 2013). Conversely, TP53 also exerts pro-oxidant effects by upregulating 

TP53-inducibe genes (PIGs) including PIG3, which is a quinone oxidoreductase/ξ-crystallin 

producing ROS by redox cycling quinones and p67phox that activates the NOX2 complex (Italiano 

et al., 2012; Porte et al., 2009). TP53 protects against tumorigenesis primarily by controlling 

expression of genes involved in cell cycle arrest, senescence and apoptosis (Bieging et al., 2014). 

 

http://www.bu.edu/nf-kb/gene-resourses/target-genes/
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4. Life and death of cells is heavily influenced by their redox status 
4a) Contributions of redox to physiology and cell signaling 
Typically, ROS signaling involves O2

– production by NOX or mitochondria, which following reduction 

to H2O2 provides an effector molecule (Ushio-Fukai, 2009). Classic examples of ROS-mediated 

regulation include insulin/growth factor signaling (Tiganis, 2011) and transient receptor potential 

(TRP) channel-mediated cation signaling (Andersson et al., 2008). In addition, RAS proteins contain 

reactive Cys residues that are susceptible to modifications by ROS/RNS that alter their signaling 

activities (Messina et al., 2019). In the case of insulin/growth factor signaling, ligand binding to the 

cognate receptor(s) stimulates production of O2
– by NOX enzymes that are closely juxta-positioned, 

with a resultant transient increase in H2O2 causing reversible inactivation of protein tyrosine 

phosphatases (e.g., PTP1B, PTPN2 and PTPN11) and the lipid phosphatase PTEN. Inactivation of 

these enzymes allows short-term de-repression of insulin/growth factor signalling and increased 

activity of various downstream mitogen-activated protein kinase (MAPK) enzymes, which leads to 

cell proliferation. Such inactivation of protein and lipid phosphatases occurs because H2O2 oxidises 

their active-site cysteines to sulfenic, sulfinic or S-glutathionylated forms (see Box 6), thereby 

inhibiting their activities until the oxidised active-site Cys is cycled back to its reduced form by the 

actions of TXN, TXNRD, SRXN, GRX and NADPH (Figure 3). The duration and magnitude of the 

NOX-derived H2O2 redox signal is controlled by PRXN enzymes, which are themselves recruited to 

growth factor receptors and associated NOX shortly after receptor stimulation. Because the activity 

of PRXN can be suppressed by phosphorylation, and reactivated by phosphatases, they allow tight 

spatiotemporal control of redox signaling around growth factor receptors (Rhee et al., 2012). 

For TRP channels, ROS and RNS activate TRPA1, TRPM2, TRPM7, TRPML1 and TRPML2, 

causing stimulation of Ca2+ signaling resulting in diverse responses including chemosensitisation/ 

pain, inflammation, proliferation, cytoprotection and cell death (Zhang et al., 2018b). TRPA1 is best 

understood in terms of its response to H2O2, 4-HNE and 15d-PGJ2 (Andersson et al., 2008). Within 

human TRPA1, Cys-414, Cys-421, Cys-621, Cys-641 and Cys-665 contribute to regulation of the 

channel by electrophiles (Hinman et al., 2006; Macpherson et al., 2007). Cryo-electron microscopy 

has confirmed that Cys-621, Cys-641 and Cys-665 are highly reactive (Paulsen et al., 2015), but 

further experiments are required to determine how TRP channels are activated by ROS/RNS. 

 

4b) Oxidative stress activates cell death pathways 
ROS are potent stimulators of apoptosis and can activate the intrinsic mitochondrial pathway, the 

extrinsic death receptor pathway and the ER stress pathway (Redza-Dutordoir and Averill-Bates, 

2016). In each of these instances, mitochondria are central to triggering apoptosis. ROS stimulate 

events that lead to loss of the inner mitochondrial membrane permeability and control of the 

mitochondrial permeability transition pore complex, disrupting membrane potential and resulting in 

release of cytochrome c and activation of caspases -3, -6 and -7 (Orrenius et al., 2015). 
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Whilst under conditions of mild oxidative stress TP53 contributes to adaptation by inducing 

antioxidant genes, under more stringent conditions TP53 orchestrates apoptosis by stimulating 

production of ROS. TP53-target genes that stimulate apoptosis include PIG3 and PIG6, 

mitochondrial proline dehydrogenases that produce ROS indirectly by providing carbon for other 

mitochondrial dehydrogenases (Goncalves et al., 2014; Porte et al., 2009). Activation of TP53 by 

high levels of ROS induces genes for BAX, PUMA and p66Shc which perturb mitochondrial function 

and cause release of cytochrome c and increased ROS production (Liu and Xu, 2011). Also, when 

TP53 is activated under proapoptotic conditions, it represses the expression of SOD2 and several 

NRF2-target genes (Faraonio et al., 2006). 

ROS can also trigger ferroptosis, an iron-dependent form of cell death, distinct from apoptosis, 

autophagy and necrosis (Dixon et al., 2012), requiring redox-cycling of Fe2+/Fe3+ that stimulates 

peroxidation of membrane phospholipids (Yang et al., 2014). Free intracellular redox-active iron 

allows increased ROS production via Fenton chemistry and/or increased lipoxygenase activity 

(Stockwell et al., 2017; Yang et al., 2016b). In turn, this results in oxidation of membrane 

phospholipid-PUFAs, presumably altering membrane pores, integrity or curvature (Dixon and 

Stockwell, 2019). Evidence indicates that GPX4 and maintenance of intracellular cysteine levels are 

each important in suppressing ferroptosis as the GPX4 inhibitor RSL-3, and the cystine/glutamate 

antiporter xCT inhibitor erastin, can markedly stimulate death in cancer cells harbouring oncogenic 

RAS (Yang and Stockwell, 2008). Also, activation of the tumor suppressor p14ARF by ROS can 

stimulate ferroptosis by activating TP53 and suppressing the activity of NRF2, thereby 

downregulating SLC7A11 and diminishing xCT activity (Chen et al., 2017). 

It is becoming increasingly apparent that redox signaling strongly influences apoptosis, and 

ferroptosis (Benhar, 2020). Thus, the activities of the Fas receptor, BAX, cIAP, XIAP, caspase-9 and 

caspase-3 can be modified by S-nitrosylation, S-glutathionylation, S-persulfidation or thiol oxidation. 

Ferroptosis is antagonised by ferroptosis suppressor protein 1 (FSP1) in a reaction in which ubiquinol 

(CoQH2) traps lipid peroxyl radicals and generates ubiquinone (CoQ), and FSP1 regenerates CoQH2 

using NADPH. Future studies are required to determine the extent to which redox switches controlled 

by the GSH and/or TXN antioxidant systems suppress apoptosis and/or ferroptosis and the triggering 

of regulated cell death. 

 

5. Oxidative stress increases cancer risk 
It is recognised that chronic inflammation, with cross-talk between myeloid cell-derived ROS and 

TNFα-mediated signaling, can lead to carcinogenesis (Canli et al., 2017). It is equally well known 

that sustained exposure to high ROS levels can damage DNA, and that a COSMIC mutation 

signature exists which is associated with oxidative DNA damage (Rose Li et al., 2020). The clearest 

evidence that ROS may increase the risk of cancer, when antioxidant defences are insufficient to 

provide protection against oxidative stress, comes from knockout of O2
–-scavenging enzymes. 
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Thus, mice homozygous nulled for cytoplasmic Sod1, or heterozygous nulled for mitochondrial Sod2, 

exhibit evidence of severe oxidative damage and develop cancer spontaneously (Gill et al., 2016). 

In the case of H2O2-scavenging enzymes, loss of certain genes encoding Prdx and selenium-

dependent Gpx enzymes predispose to tumorigenesis. Specifically, Prdx1-/- and Prdx1+/- mice exhibit 

increased oxidative DNA damage, and the aging mutant mice exhibit a higher spontaneous 

incidence of hepatocellular carcinoma, fibrosarcoma, osteosarcoma, islet cell adenoma, lung 

adenocarcinoma and breast adenocarcinoma than age-matched Prdx1+/+ mice (Neumann et al., 

2003); by contrast, Prdx2-/-, Prdx4-/- and Prdx6-/- mice do not spontaneously develop cancer 

(Hampton et al., 2018). Gpx1-/- and Gpx2-/- mice are healthy under normal laboratory conditions but 

Gpx1/2 double knockout mice are susceptible to ileocolitis upon weaning and develop ileal and 

colonic tumors at 6 months of age that are dependent on the presence of commensal microflora 

(Chu et al., 2004). Interestingly, Cat-/- mice show differential sensitivity to oxidants and peroxisomal 

function but do not suffer increased risk of cancer (Hwang et al., 2012). 

Heightened production of HO increases susceptibility to tumorigenesis by modifying DNA 

(Halliwell and Gutteridge, 2015). Consistent with this notion, patients with iron overload or 

haemochromatosis have a greater cancer risk (Torti et al., 2018). However, whilst ferritin-deficient 

mice have been reported, it is not known if iron-replete ferritin-knockout mice are more susceptible 

to cancer. In chronic inflammation, levels of ONOO– may increase substantially, which following 

combination with CO2 leads to formation of nitrosoperoxycarbonate that decomposes to CO3
– and 

NO2, and which in turn initiate selective oxidation and nitration of guanine in DNA, leading to 

guanine−thymidine cross-links (Shafirovich and Geacintov, 2017). 

As increases in steady-state levels of ROS are associated with heightened risk of tumorigenesis, 

it could be extrapolated that chronic loss of antioxidant status is associated with a similar risk. 

Evaluating a role for GSH in modulating the risk of carcinogenesis is confounded by the fact that 

knockout of Gclc or Gss is embryonically lethal. By contrast, knockout of Gclm has a less profound 

effect on GSH, with levels in liver, kidney, pancreas and erythrocytes of mutant mice being ∼15% of 

that in wild-type (Yang et al., 2002). Whilst fibroblasts prepared from Gclm-/- mice show increased 

amounts of ROS and DNA damage that is accompanied by upregulation of Tp53 and p21 (Chen et 

al., 2009), these mice do not develop tumors spontaneously. 

 

6. Responses to episodes of oxidative stress in premalignant and malignant cells during 
the multiple stages of tumor development 

Whilst ROS/RNS can initiate carcinogenesis, they support the proliferation of initiated cells during 

the promotion and progression stages of tumorigenesis (Figure 4). However, oxidative stress can 

stimulate senescence or apoptosis in neoplastic cells during all stages of tumorigenesis, including 

anchorage-independent growth and metastasis. It is also recognised that GSH levels and TXN 
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and/or TXNRD are commonly increased in many cancer cells, presumably to combat the high ROS 

burden, and that this is associated with poor prognosis (Benhar et al., 2016). 

 
6a) ROS production is heightened in malignant disease 
Cancer cells contain higher levels of ROS than normal cells, and this sustains the phenotype. 

Sources of increased ROS production in tumor cells have been attributed to oncogene- and/or 

damage-stimulated production of: i) O2
– by mitochondria, associated with altered assembly of the 

electron transport chain, hypoxia or anchorage-independent growth; ii) O2
– by NOX, associated 

with hyperproliferation or centrosome abnormalities; iii) H2O2 by 5-lipoxygenase, associated with cell 

mobility; iv) H2O2 within the ER, associated with protein folding (Arnandis et al., 2018; Raimondi et 

al., 2020; Reczek et al., 2017; Zhou et al., 2014). Examples of oncogenes that increase ROS 

production include: a) Ras that alters mitochondrial metabolism, decreases mitochondrial membrane 

potential, and activates NOX2 and/or NOX4; b) Ras-related C3 botulinum toxin substrate 1 (Rac1) 

that activates NOX1; c) STAT3 that alters mitochondrial metabolism and activates NOX4; d) B-cell 

lymphoma 2 (BCL-2) that alters mitochondrial function; e) MYC that downregulates PGC-1α and 

suppresses mitochondrial biogenesis (Chong et al., 2018; Igelmann et al., 2019; Liou et al., 2016; 

Marcar et al., 2019; Satoh et al., 2017). Increased ROS levels in tumor cells may also result from 

loss of tumor suppressor-mediated regulation of antioxidant genes, such as decreased expression 

of SOD2, GPX1, SESN1 and SESN2 following inactivation of TP53 (Gorrini et al., 2013), or by 

posttranslational modifications, exemplified by acetylation of SOD2 (He et al., 2019), that confers 

upon antioxidant enzymes pro-oxidant properties.  Additionally, cancer cells may be stimulated to 

produce ROS by TNFα secreted by immune cells, or they may encounter ROS generated by immune 

cells recruited to the tumor. 

The increase in ROS in cancer cells stimulates proliferation and cell survival by blunting the 

activities of PTPs, PTEN (Figure 3), and MAPK phosphatases, thereby augmenting MAPK−ERK, 

PI3K−Akt and PKD−NF-κB signaling cascades, in a cell-specific manner (Moloney and Cotter, 2018). 

To support the proliferative benefits of high ROS levels whilst mitigating the risk of 

senescence/apoptosis, tumor cells upregulate antioxidant transcription factors and/or reprogram 

metabolism to increase NADPH and de novo synthesis of GSH by a variety of means (see below). 

Besides augmenting antioxidant systems to ameliorate oxidative stress, tumor cells may 

stimulate anti-apoptotic and pro-survival pathways. For example, breast cancer cells can utilize the 

redox-sensitive TRPA1 channel to activate Ca2+-signaling and so stimulate ERK and PI3K-PKB/Akt 

pathways, which in turn activate MCL-1 contributing to oxidative stress tolerance and drug 

resistance; moreover, NRF2 regulates expression of TRPA1, reinforcing the link between redox 

homeostasis and Ca2+-signaling (Takahashi et al., 2018), and extending the influence of NRF2 
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beyond redox. Perhaps also relevant, downstream of these events, clusters of proteins that 

participate in Ca2+ homeostasis are particularly sensitive to S-glutathionylation (Grek et al., 2013). 

 

6b) ROS production in premalignant cells mandates redox adjustments controlled by NRF2  
The view that ROS are necessary for tumor promotion is supported by the report that their 

pharmacological suppression using NAC or apocynin, attenuates lung adenocarcinoma in an 

oncogenic K-RASG12D−driven mouse model in which lung-specific knockout of Ikkα resulted in 

increased Nox2 expression and downregulation of Nrf2 (Song et al., 2018). Similarly, in an oncogenic 

B-RAFV600E−driven mouse melanoma model, knockout of Klf9 inhibited premalignant melanocyte 

hyperplasia because ROS production was diminished (Bagati et al., 2019), which is noteworthy 

because KLF9 suppresses NRF2 (Zucker et al., 2014). It is equally apparent that for malignant 

lesions to develop, levels of ROS should not exceed an upper ceiling. Thus, loss of antioxidant 

capacity as a consequence of knockout of Tigar, which impairs generation of NADPH, decreases 

development of premalignant pancreatic intraepithelial neoplasia (PanIN) lesions in a variety of K-

RASG12D−based mouse cancer models, including Trp53-/+ and Trp53R172H (Cheung et al., 2020). 

Recognition that tumorigenesis requires maintenance of high intracellular ROS levels raises 

questions about how cells harbouring mutations in oncogenes or tumor suppressor genes adjust 

their redox homeostasis so that the pro-tumorigenic effects of ROS are not quenched, whilst at the 

same time not succumbing to senescence or apoptosis. The Solt-Farber rat carcinogenesis model 

[induced by i.p. treatments with diethylnitrosamine (DEN) to initiate carcinogenesis, followed 2-

weeks later by two-thirds partial hepatectomy and dietary administration of 2-acetylaminofluorene to 

select growth of initiated cells] enables changes that accompany the different stages of cancer to be 

analysed, with the appearance in rat liver of physically discernible preneoplastic nodules, comprising 

as few as 20 hepatocytes, before the appearance of preneoplastic nodules/adenomas, which in turn 

precede formation of hepatocellular carcinomas  (Farber, 1984). Gene expression profiling revealed 

GCLC and GSTP1 are induced in early rat liver preneoplastic foci obtained 4 weeks after initiation, 

and robust induction of AKR7A1, GCLC, GCLM, GGT, GPX2, GSR, GSS, GSTA5, NQO1, TXNRD1 

and UGT1A6 occurs in persistent nodules obtained 10-20 weeks after initiation (Petrelli et al., 2014). 

Besides induction of GCLC and GSTP1, early nodules increase both glycolysis and the PPP by 

augmenting activities/protein levels of glucose transporter 1 GLUT1 (SLC2A1), hexokinase II (HK2), 

monocarboxylate transporter 4 (MCT4, SLC16A3, for lactate), G6PD and TIGAR, whilst at the same 

time suppressing OXPHOS by inducing the mitochondrial chaperone tumor necrosis factor receptor-

associated protein 1 (TRAP1) that binds complex II and IV of the electron transport chain and inhibits 

succinate dehydrogenase (Kowalik et al., 2016). Collectively, these findings suggest that antioxidant 

systems are upregulated and metabolism reconfigured in response to increases in ROS during the 

promotion and early progression stages of carcinogenesis. Interestingly, the changes in metabolism 
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in rat liver preneoplastic nodules broadly resemble the biochemical responses to acute oxidative 

stress in Fh1loxP/loxP mouse kidney epithelial cells (van der Reest et al., 2018). 

Many of the antioxidant genes upregulated in rat liver preneoplastic nodules are NRF2-target 

genes, suggesting NRF2 mediates adaptation to oncogene-stimulated oxidative stress. This 

interpretation is supported by the fact that NRF2-null rats subject to a modified Solt-Farber protocol 

(i.e. DEN followed by a choline-devoid and methionine-deficient diet) do not form preneoplastic 

nodules (Orru et al., 2018). The mechanism by which NRF2 transactivation activity is increased in 

preneoplastic nodules provides an insight into the severity of stress that initiated cells have to 

withstand. Thus, whilst NRF2 can be upregulated either by ROS inhibiting its repressor KEAP1, an 

E3 ubiquitin ligase substrate adaptor that controls NRF2 protein stability (Suzuki et al., 2019), or by 

oncogenes transcriptionally increasing NRF2 mRNA production (DeNicola et al., 2011), neither of 

these mechanisms are of principal importance in hepatic preneoplastic nodules. Rather, these 

nodules frequently contain gain-of-function mutations in NFE2L2 (Zavattari et al., 2015), indicating 

that permanent activation of NRF2 is necessary to allow initiated cells to survive and proliferate, 

rather than succumb to oxidative stress-driven apoptosis (Figure 5a). Most remarkably, it was 

estimated that approx. 70% of early preneoplastic nodules harboured ‘hot spot’ mutations in NFE2L2 

encoding amino acids within NRF2 that physically engage with the Kelch-repeat domain of KEAP1 

and are necessary for ubiquitylation of the transcription factor by CRLKEAP1 (Zavattari et al., 2015). 

Somatic mutations in NFE2L2 were also observed in approx. 60% of early and advanced 

hepatocellular carcinomas, respectively, suggesting genetic activation of NRF2 is required 

throughout promotion and progression of liver tumorigenesis.  

The hypothesis that formation of hepatic preneoplastic nodules in the rat requires NRF2 accords 

with mouse experiments in which livers from wildtype animals given a single i.p. dose of DEN all 

contained tumors after 9 months, compared to none from Nrf2-null mice (Ngo et al., 2017). This 

dependence on NRF2 also seems true of a number of other types of cancer. For example, the 

incidence of pancreatic cancer was markedly reduced in Nrf2-null mice relative to wildtype mice in 

a K-RasG12D−driven cancer model (DeNicola et al., 2011), and the incidence of lung tumors in Nrf2-

null mice was also modestly reduced relative to wild-type mice in urethane-initiated cancer (Bauer 

et al., 2011; Satoh et al., 2013). Similarly, knockout of Keap1 in mice, leading to hyperactivation of 

Nrf2, accelerated cholangiocarcinoma driven by K-RasG12D and Trp53R172H (Nabeshima et al., 2020).  

It is striking that the high frequency of somatic mutations in NFE2L2 observed in both rat liver 

preneoplastic nodules (Zavattari et al., 2015) and murine hepatoma (Ngo et al., 2017), which result 

in constitutive activation of NRF2, are clinically relevant as NFE2L2 or KEAP1 are frequently mutated 

in human tumors. In this context, it is imperative to recognise that there is no evidence that 

constitutive activation of NRF2, as for example observed in the Keap1FA/- mouse (in which the 

Keap1FA allele is hypomorphic (Taguchi et al., 2010)), is sufficient to trigger spontaneous 

tumorigenesis. Studies of Keap1FA/- mice have revealed constitutive upregulation of Nrf2 increases 
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proliferation of forestomach epithelium, but not cancer (Mitsuishi et al., 2012), and that Nrf2 mediated 

maximal transactivation of G6pd, Pgd and Me1 requires activation of the PI3K-Akt signaling 

pathway, which likely results in inhibition of GSK-3 and the failure to form the phosphodegron in the 

Neh6 domain of NRF2 that is recognised by β-TrCP (Chowdhry et al., 2013). Moreover, constitutive 

activation of NRF2, by deleting its Neh2 KEAP1-interaction domain does not increase the rate of 

primary tumor formation in a MMTV-rtTA::TetO-Her2 mouse cancer model (Fox et al., 2020). 

Collectively, these results imply that subsequent to a cancer initiating mutation(s), dysregulation of 

the NRF2-KEAP1 axis is a selective event under conditions of chronic oxidative stress, and so NRF2 

activation per se is not sufficient to stimulate cancer initiation. 

 

6c) NRF2-independent antioxidant mechanisms can also support early tumorigenesis 
The dependence on NRF2 for liver, pancreatic and lung cancer observed in rodents may not be true 

for other malignancies. For example, the incidence of tumors in Nrf2-null mice was not diminished 

relative to wildtype mice in benzo[a]pyrene-initiated gastric cancer (Ramos-Gomez et al., 2001), 

7,12-dimethylbenz[a]anthracene-initiated and 12-O-tetradecanoylphorbol-13-acetate−promoted 

skin cancer (Xu et al., 2006) or UV-initiated skin cancer (Knatko et al., 2015). In these cases, other 

members of the antioxidant transcription factor network may contribute to the putative resetting of 

redox homeostasis in early adenomas. Of possible relevance, NRF2-independent metabolic 

reprogramming occurs in rat preneoplastic nodules, as evidenced by upregulation of GLUT1, HK2, 

MCT4 and TIGAR in the lesions (Kowalik et al., 2016): HIF-1α may be responsible for upregulation 

of GLUT1, HK2 and MCT4; NF-κB may be responsible for upregulation of GLUT1; TP53 may be 

responsible for upregulation of TIGAR. 

In instances where NRF2 is not constitutively activated during the initiation of tumorigenesis, 

oncogenic tyrosine kinases may reprogram metabolism by phosphorylating the cancer-specific 

PKM2 isoform. In this scenario, phosphorylation of PKM2 causes it to adopt a dimeric rather than 

tetrameric quaternary structure, resulting in loss of pyruvate kinase activity and a relative block in 

the final steps of glycolysis (Li et al., 2014). In turn, spill-over of accumulated glucose-6-phosphate 

into the PPP increases NADPH generation by G6PDH, which enhances GSH- and TXN-based 

antioxidant defences (as indicated in Figure 1). Loss of pyruvate kinase activity also aids GSH 

synthesis. Specifically, increases in glyceraldehyde-3-phosphate, resulting from phosphorylation of 

PKM2, can be funnelled through the serine synthesis pathway, with the resulting serine being 

available to form glycine (from serine by serine hydroxymethyltransferase within the one-carbon 

pathway) and cysteine (from cystathionine by cystathionine lyase within the trans-sulfuration 

pathway), two of the amino acids used to synthesise GSH (Yang and Vousden, 2016); the supply of 

cysteine can be augmented by the cystine/glutamate antiporter SLC7A11, the expression of which 

can be increased by oncogenic Ras (Lim et al., 2019). Besides glycine and cysteine, GSH 
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biosynthesis requires a supply of glutamate, and this can be provided by the combined actions of 

the transporters ASCT2/SLC1A5 and SNAT2/SLC38A2 that import glutamine (Broer et al., 2019; 

Morotti et al., 2019) along with glutaminase that converts glutamine to glutamate (Mates et al., 2020). 

Importantly, both the glutamine transporters and glutaminase are upregulated in tumor cells through 

oncogene activation or hypoxia (Bott et al., 2015; Lukey et al., 2016; Morotti et al., 2019).  

Amongst 29 cancer types, significant positive selections for mutations in NFE2L2 and KEAP1 

occur in bladder, endometrium, oesophagus, head-neck, liver and lung (Martincorena et al., 2017). 

Somatic mutations in NFE2L2 or KEAP1 are not however universal features of malignant disease, 

and so other mechanisms of NRF2 activation as well as NRF2-independent antioxidant systems 

likely contribute to adaptation to oxidative stress that accompanies tumorigenesis in certain types of 

cancer. Possibly, NRF2 is only genetically upregulated when certain oncogenes are activated or 

tumor suppressor genes lost. 

 
6d) Supply of exogenous antioxidants and diminution of endogenous antioxidants 
modulates early tumorigenesis 
Using Cre-inducible Kras2LSL- and BrafCA-based lung cancer models, it has been found that 

administration of NAC in the drinking water, or vitamin E in the diet, one week after initiation of 

tumorigenesis by expressing K-RASG12D or B-RAFV600E, significantly increased tumor burden (Sayin 

et al., 2014). This was attributed to the ability of NAC and vitamin E to diminish oxidative stress, 

decrease DNA damage and blunt activation of wild-type TP53. However, it is noteworthy that many 

genes that were downregulated by the NAC and vitamin E treatments are NRF2 transcriptional 

targets, and the extent to which these antioxidants influenced the activity of other members of the 

antioxidant transcription factor network was not investigated. Nevertheless, it is interesting that NAC 

and vitamin E both support lung tumorigenesis, suggesting that maintenance of redox status 

throughout the cell is important during early tumor progression. 

      Experiments using the MMTV-PyMT spontaneous mammary tumor mouse model showed that 

in order for disease to proceed, cancer cells require GSH to maintain their appropriate redox status 

during the early stages of tumorigenesis, though this does not necessarily involve NRF2. Thus, 

immediately after weaning, administration of the GCL inhibitor buthionine-(S,R)-sulfoximine (BSO) 

to MMTV-PyMT mice greatly delayed tumor onset, suggesting that a critical threshold of GSH is 

required to support initiation of cancer (Harris et al., 2015). By contrast, when BSO was administered 

to MMTV-PyMT mice once mammary tumors had become physically evident, it was unable to delay 

tumor progression. Failure of BSO to inhibit later tumor progression is likely a consequence of 

malignant transformation causing overexpression of both CD44 and TXNRD1, which in turn allowed 

tumor cells to compensate for loss of GSH by increasing cystine uptake via xCT and by better 

utilising TXN. Notably, when cancer cells were treated with a combination of BSO plus the xCT 

inhibitor sulfasalazine, or a combination of BSO plus the TXNRD1 inhibitor Auranofin, a striking 
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increase in cell death was observed, dependent on ROS. After tumors were established, treatment 

of MMTV-PyMT mice with BSO plus sulfasalazine markedly reduced tumour growth in vivo. 

Together, these results suggest that during initiation of cancer the GSH antioxidant system is 

principally responsible for attenuation of ROS that might trigger cell death, whereas after initiation, 

GSH and TXN synergistically support tumor cell survival. Whilst NRF2 controls GSH homeostasis, 

other members of the antioxidant transcription factor network may also contribute to maintaining high 

GSH and TXN levels (see Table 1). 

 
6e) Influence of ROS and RNS on the tumor microenvironment during progression of disease  
Cancer progression requires shaping the tumor microenvironment (TME). This involves reciprocal 

cross-talk between neoplastic cells and the TME that includes ROS/RNS. The functions of cancer-

associated fibroblasts (CAFs), tumor-associated macrophages (TAMs) and T cells are all affected 

by ROS/RNS within the TME. Thus, both CAFs and TAMs “cooperate” with neoplastic cells by 

contributing to a developmental program called epithelial-to-mesenchymal transition (EMT) by 

helping to remodel the extracellular matrix (ECM), thereby stimulating tumor cell proliferation, tumor 

angiogenesis, immunosuppression and tumor invasion (Nieto et al., 2016). Additionally, regulatory 

T (Treg) cells, which are critical for preventing autoimmunity, suppress effective tumor immunity; the 

presence of intratumoral Treg cells is often associated with poor prognosis (Beyer and Schultze, 

2006). The TME also harbors specific cytotoxic CD8+ T cells. Although expected to support the 

immune destruction of tumor cells, CD8+ T cells often express co-inhibitory receptors such as 

programmed death-1 (PD-1), and are considered terminally differentiated or “exhausted”. 

Conversely, the recently identified subset of stem cell-like tumor-infiltrating PD-1+ TCF1+ CD8+T 

cells contribute to limiting tumor progression in response to immunotherapy (Held et al., 2019). 

In terms of the effects of ROS in the TME, chronic oxidative stress resulting from JunD 

inactivation has been shown to promote myofibroblast differentiation in stroma associated with 

mammary adenocarcinomas through activation of HIF-1α and increased production of the CXCL12 

chemokine, which together stimulate tumor growth and vascular remodelling, and shorten survival 

(Toullec et al., 2010). It is therefore of interest that in stromal remodeling associated with progression 

of prostate cancer, transforming growth factor-beta (TGF-β)−stimulated fibroblast-to-myofibroblast 

differentiation is preceded by induction of NOX4, increased production of ROS and phosphorylation 

of JNK, and is accompanied by downregulation of the selenoproteins GPX3 and TXNRD1 (Sampson 

et al., 2011). By contrast, selenium supplementation decreases ROS levels and inhibits fibroblast 

differentiation into myofibroblasts, suggesting ROS drive trans-differentiation of stromal cells. In 

addition, cancer cell-derived H2O2 causes metabolic changes in CAFs, including increased glucose 

uptake, decreased mitochondrial activity, and increased ROS production, whereas the presence of 

CAFs causes reciprocal metabolic changes in the adjacent cancer cells, such as decreased glucose 
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uptake and increased mitochondrial activity (Martinez-Outschoorn et al., 2011). These metabolic 

alterations can be abrogated by addition of CAT, implicating H2O2 as the signaling molecule. 

ROS also contribute to the pro-tumorigenenic, anti-inflammatory and immunosuppressive 

properties of TAMs that favor tumor progression. In malignant melanoma, production by TAMs of 

mitochondrial ROS stimulates MAPK/ERK activity leading to secretion of TNFα, which promotes 

tumor cell invasion (Lin et al., 2013). When exposed to cell-free tumor fluid, peritoneal macrophages 

that exist in the classically active pro-inflammatory (M1) phenotype adopt an alternatively activated 

(M2) phenotype associated with immunosuppression (Ghosh et al., 2015). Furthermore, ROS and 

RNS produced by TAMs suppress T cell functions (Ghosh et al., 2015; Hamilton et al., 2014). It has 

been shown that in mice, O2
– generated by Nox2 stimulates Treg cells to dampen T cell-mediated 

inflammation (Kraaij et al., 2010). It is not clear if this process is recapitulated in TAMs, but if so, it 

would further contribute to TAM-mediated immunosuppression. Notably, using oncogene-initiated 

zebrafish models of glioma, it was shown that TAMs engage in ATP-mediated interactions with pre-

neoplastic cells at a very early stage of tumor development, and that depletion of TAMs or reducing 

the number of these interactions significantly impairs the proliferation of neoplastic cells (Chia et al., 

2019; Chia et al., 2018). Whether or not ROS play a role in these interactions is currently unknown, 

although this is a distinct possibility considering that oncogene activation stimulates ROS production. 

Myeloid-derived suppressor cells (MDSCs) induce antigen-specific CD8+ T-cell tolerance, which 

constitutes a major mechanism of tumor escape from immune surveillance. Tumor-infiltrating 

MDSCs produce ONOO–, which nitrates Tyr residues in the T-cell receptor (TCR)-CD8 complex, 

thus disrupting binding of specific peptide-major histocompatibility complex (pMHC) dimers to the 

CD8+ T cell (Nagaraj et al., 2007); critically, use of a ONOO– scavenger abolished MDSC-induced T 

cell tolerance. Treatment of cancer cells with ONOO– inhibited binding of processed peptides to 

cancer cell-associated MHC, resulting in resistance to antigen-specific cytotoxic T cells, whereas 

inhibition of ONOO– production improved immunotherapy (Lu et al., 2011), implicating ONOO– as a 

critical regulator of the effects of cytotoxic T cells. Overall, in myeloid cells, mitochondria, NOX, 

arginase-1 and NOS2 all contribute to ROS production, where in addition to O2
–, cooperation 

between arginase-1 and NOS2 results in the formation of ONOO–. The combined effect of ROS and 

RNS leads to T cell suppression, tolerance and resistance to cytotoxic T cells. 

In T cells, ROS play a dual role. Mitochondrial ROS are essential for T cell activation (Kaminski 

et al., 2012; Sena et al., 2013), but ROS in the TME can lead to T cell hypo-responsiveness 

(Cemerski et al., 2002). In tumor-infiltrating T cells, which are functionally impaired, mitochondrial 

activity is compromised (Scharping et al., 2016; Siska et al., 2017), but can be rescued by increasing 

mitochondrial biogenesis (Scharping et al., 2016), using mitochondrial ROS scavengers (Siska et 

al., 2017), or by overexpression of CAT (Ligtenberg et al., 2016). Critically, these manipulations also 

restore the antitumor activity of T cells, further demonstrating the importance of mitochondrial activity 

and balanced ROS production for T cell function. Interestingly, enhanced mitochondrial activity and 
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ROS production synergize with the tumoricidal activity of PD-1 blockade by expansion of 

effector/memory T cells (Chamoto et al., 2017). In addition, production of ONOO– in the TME inhibits 

T cell migration into the tumor by nitrating and inactivating the chemokine CCL2 (Molon et al., 2011), 

which is a chemoattractant for myeloid cells, activated T cells, and natural killer (NK) cells. 

Although information is limited, it appears that unlike most other immune cells in the TME, 

neutrophils preserve their anti-tumor activity under oxidative stress conditions, which could be 

attributed to their high ROS-producing potential. Thus, tumor-associated neutrophils have been 

shown to suppress the expansion of the pro-tumorigenic IL-17+ γδ T cells via NOX2-mediated O2
– 

production (Mensurado et al., 2018). Moreover, IL-17-producing γδ T cells have lower GSH levels 

than their IFNγ-producing γδ counterparts, providing an explanation for the exquisite sensitivity of IL-

17+ γδ T cells to O2
– and H2O2. Importantly, Vδ1+ γδ T cells, the main γδ T cell subset that produces 

IL-17 in human tumors, also have low GSH levels in comparison with other human T cell subsets, 

and are sensitive to ROS, suggesting the clinical relevance of these findings. 

These findings indicate that increases in ROS/RNS stimulate changes in the TME that support 

tumorigenesis by altering the functions of CAFs and TAMs, and at the same time they stimulate 

changes in T cells that might suppress immune responses to tumor cells. 

 
6f) EMT during cancer progression entails marked changes in redox status and tumor cell 
heterogeneity 
For early neoplastic cells to progress to malignant carcinomas, they typically exploit EMT in order to 

increase mobility and invade adjacent stroma (Nieto et al., 2016), which can confer tumor-initiating 

potential and cancer stem cell properties, that enables them to form new foci when seeded 

elsewhere (San Juan et al., 2019). Activation of EMT is dictated by the tissue in which the neoplastic 

cell originated, as well as by CAFs and TAMs in their microenvironment (El-Kenawi et al., 2019), 

and thus provides major roles for Wnt, TGF-β and Notch ligands, along with various growth factors 

(Chaffer et al., 2016) and ROS (Jiang et al., 2017), in initiating the program. It is a highly-coordinated 

process during which early epithelial-like neoplastic cells acquire mesenchymal-like features, 

accompanied by restructuring of the composition of ECM proteins (Dongre and Weinberg, 2019). 

Pioneering studies by Mina Bissell and colleagues revealed that initiation of EMT in murine SCp2 

mammary epithelial cells upon exposure to MMP-3 involved expression of an alternatively spliced 

form of Rac1, called Rac1b, which by stimulating mitochondrial ROS production caused induction of 

vimentin, increased cell migration and genomic instability (Radisky et al., 2005). These workers also 

discovered that the ability of MMP-3 to initiate EMT in SCp2 cells could be blocked by treatment with 

the antioxidant NAC or by ectopic expression of SOD2, but not by ectopic SOD1 or CAT, results 

suggesting that mitochondrially-produced ROS are required during the very early stages of EMT. It 

is likely that SOD2 contributes to EMT, insofar as when it is overexpressed in MCF-7 cells (which 
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exhibit an epithelial-like phenotype) it becomes acetylated on Lys-68, probably catalysed by the 

GCN5L1 acetyl transferase, with the resulting post-translationally-modified enzyme displaying pro-

oxidant rather than antioxidant activity (He et al., 2019); it is currently envisaged that SOD2K68Ac 

increases ROS production, which in turn activates HIF-2α, producing a cancer stem cell like 

phenotype that includes expression of Oct4 and Nanog. 

EMT in neoplastic cells is directed by the master regulator EMT-activating transcription factors 

(EMT-TFs) SNAIL (also called SNAI1), SLUG (also called SNAI2), TWIST1, TWIST2, ZEB1 and 

ZEB2, which are considered key drivers of tumor progression as they transactivate genes associated 

with a mesenchymal state and repress genes associated with an epithelial state (Stemmler et al., 

2019). Interestingly, EMT-TFs differ in their relative abilities to induce mesenchymal-associated 

genes and repress epithelial-associated genes. In some settings, SNAIL and ZEB1 only weakly 

induce mesenchymal-associated genes, whilst strongly repressing epithelial-associated genes, 

whereas TWIST1 exerts the opposite effects (Chaffer et al., 2016). Expression of SNAIL, SLUG, 

TWIST1, ZEB1 and ZEB2 is subject to complex control mechanisms, including transcriptional 

regulation by AP1, HIF-1α, NF-κB and TP53 (Figure 5b), a fact that implies the ability of EMT-TFs 

to induce mesenchymal-related genes and repress epithelial-related genes is controlled in part by 

redox signalling (Jiang et al., 2017); moreover, HSF1, which is also redox regulated, supports EMT 

(Powell et al., 2016; Xi et al., 2012). Consistent with the notion that redox influences EMT, this 

process can be initiated in SCp2 cells by MMP-3, which elicits a Rac1b-stimulated production of 

ROS, that leads to activation of NF-κB, and in turn the upregulation of SNAIL (Cichon and Radisky, 

2014).  

As mentioned above, TGF-β regulates EMT-TFs in transformed cells and it is inextricably 

interrelated with redox. In this situation, binding of TGF-β to its cell-surface receptor, TGF-β receptor 

type 1 (TGFβR1), or TGFβR2, causes phosphorylation of SMAD2 and SMAD3 that, in turn, trimerize 

with SMAD4 and, following nuclear translocation, positively regulate SNAIL, SLUG, TWIST1 and 

ZEB1 (Massague, 2012). Induction of EMT-TFs by TGF-β signaling is heightened considerably by 

input from the RAS-MAPK pathway (David and Massague, 2018). Critically, from a redox 

perspective, activation of TGF-β signaling induces NOX4 and represses CAT, GCLC, GCLM, GPX3 

and TXNRD1 (Liu et al., 2012; Sampson et al., 2011), with the resulting increase in ROS stimulating 

trans-differentiation and cell proliferation. 

Whilst ROS are necessary to initiate EMT, it is unclear to what extent they are required to 

maintain a mesenchymal phenotype. Consistent with ROS playing a role in initiation of EMT, 

treatment with the antioxidant NAC can antagonise stimulation of EMT by TGF-β in various cells 

types, including murine AML12 hepatocytes (Kim et al., 2019), human ARPE-19 adult retinal pigment 

epithelial cells (Yang et al., 2020) and human HCC4006 lung epithelial cells (Haley et al., 2019). Possibly 

more surprising is that in a stably gefitinib-resistant human PC-9 non-small cell lung cancer cell line, 
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treatment with NAC has been reported to increase an epithelial-phenotype and decrease the 

mesenchymal-phenotype (Li et al., 2020), suggesting a relative absence of ROS may stimulate 

mesenchymal-to-epithelial transition (MET). In contrast, oxidative stress in murine B16F10 melanoma 

cells, caused by inhibition of GSR1, has been reported to decrease EMT (Li et al., 2018), and in oral 

squamous cell carcinomas in which Aurora kinase A (AURKA) is aberrantly expressed, knockdown of 

AURKA increased ROS levels and inhibited EMT (Dawei et al., 2018). Collectively, these data suggest 

that the influence of ROS on a mesenchymal phenotype is dose- and time-dependent, with thresholds 

controlling the triggering of senescence/apoptosis being of critical importance. 

One important question is whether oxidative stress contributes to the maintenance of the cancer 

mesenchymal cell phenotype. The fact that EMT is not a binary process, and is reversible (Chaffer 

et al., 2016), represents a confounding factor when interpreting the literature. Comparisons between 

epithelial-like human MCF-7 breast cancer cells and mesenchymal-like human MDA-MB-231 breast 

cancer cells revealed that the latter produce substantially higher levels of H2O2 than the former 

(Lunetti et al., 2019). Moreover, HCC4006, A549 and H538 non-small cell lung cancer cell lines 

treated with TGF-β to induce a mesenchymal phenotype produce substantially higher levels of ROS 

than their non-treated epithelial counterparts (Haley et al., 2019). By contrast, breast cancer stem 

cells (BCSCs) with an epithelial-type morphology (i.e., E-BCSCs) have been reported to generate 

high levels of ROS, exhibit metabolic flexibility and possess heightened NRF2-regulated antioxidant 

defences necessary for survival, whereas BCSCs with a mesenchymal-type morphology (i.e., M-

BCSCs) have low ROS levels, are dependent on glycolysis for energy, do not have high antioxidant 

defences, and do not require NRF2 for survival (Luo et al., 2018). By targeting these biochemical 

differences, it was found that M-BCSCs convert to E-BCSCs upon treatment with the glycolysis 

inhibitor 2-deoxyglucose (2-DG), which also increases ROS levels; the triggering of MET in M-

BCSCs by 2-DG is thought to occur by activation of the AMPK−HIF-1α axis along with NRF2 (Luo 

et al., 2018). Remarkably, treatment of M-BCSCs with NAC antagonised the ability of 2-DG to 

stimulate MET, whilst treatment of E-BCSCs with 2-DG and the TXNRD inhibitor Auranofin 

diminished their proliferation and/or self-renewal. Also, knockdown of NRF2 decreased E-BCSC 

numbers but had no effect on the number of M-BCSCs. 

The above findings indicate that the effects of ROS on EMT are variable and probably reflect 

cancer cell-type specific and/or TME-dependent differences. It is plausible that this variability reflects 

heterogeneity in tumor cells, caused by factors controlling transition between epithelial and 

mesenchymal states. In this context, it is notable that NRF2 supports epithelial and hybrid 

epithelial/mesenchymal phenotypes, and knockout of NRF2 allows a mesenchymal phenotype to 

become established (Bocci et al., 2019; Zhou et al., 2016), though the degree to which this 

represents cause and effect is uncertain. 

 
6g) Adaptation to oxidative stress during anchorage-independent growth 
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During the first stage of the metastatic cascade (see (Nieto et al., 2016)), resistance of tumor cells 

to death triggered by their detachment from the ECM and loss of integrin-mediated signaling, 

principally anoikis, is necessary for progression of tumorigenesis. Most importantly, ECM 

detachment results in catastrophic metabolic changes including defective glucose uptake, 

attenuated PPP flux and reduced ATP levels (Hawk and Schafer, 2018) that limits the metabolic 

flexibility of detached cells and renders them susceptible to oxidative stress. Indeed, detachment of 

non-transformed human MCF-10A breast epithelial cells increases ROS and decreases GSH due to 

diminished PPP flux (Schafer et al., 2009), whilst detachment of human A549 non-small cell lung 

cancer cells increases H2O2 and decreases NADPH levels (Jeon et al., 2012).  

Cancer cells can employ a wide variety of mechanisms to avoid anoikis, including triggering of 

EMT, integrin switching, growth factor overexpression, activating pro-survival signaling, activating 

oncogenes, and adapting metabolism to ameliorate stress (Paoli et al., 2013). In the last category, 

there is ample evidence that upregulation of antioxidant genes blunts anoikis and supports 

anchorage-independent growth. However, unlike adaptation to oxidative stress during initiation of 

tumorigenesis, which often involves somatic mutation of NFE2L2 or KEAP1, adaptation during 

anchorage-independent cell growth involves rerouting metabolism to increase generation of NADPH 

without resorting to constitutive activation of antioxidant genes. In three-dimensional (3D) luminal-

filling experiments, MCF-10A cells that lack matrix attachment are unable to form acinar structures 

because they succumb to anoikis, but this can be rescued by certain oncogenes including ERBB2. 

By virtue of the fact it prevents downregulation of the EGFR and maintains the PI3K pathway after 

matrix detachment, overexpression of ERBB2 enables MCF-10A cells to form acinar structures, 

thereby increasing glucose uptake and restoring ATP levels (Schafer et al., 2009). This increase in 

glucose uptake was found to be funnelled down the PPP to enhance NADPH production by G6PD 

and increase GSH levels that might suppress ROS induced cell death; this resembles, at least in 

part, adaptation to acute oxidative stress in normal cells (see Figure 1). Also of note, this increase 

in antioxidant status prevented ROS from inhibiting fatty acid oxidation and so maintained 

intracellular ATP levels sufficiently to avert metabolic crisis. 

Matrix detachment produces energy stress that activates AMPK, which also contributes to 

increased production of NADPH (Jeon et al., 2012). In A549 cells, matrix detachment by 

phosphorylating and inhibiting acetyl-CoA carboxylase (ACC1 and ACC2), triggered AMPK 

activation to provide protection against oxidative stress, ultimately decreasing fatty acid synthesis 

and increasing fatty acid oxidation (Jeon et al., 2012). This blunting of fatty acid synthesis by 

inhibition of ACC1/2 conserves NADPH, making it available to support antioxidant defences, and so 

counter oxidative stress that would otherwise trigger cell death. Of note, knockdown of ACC1 in A549 

cells blocked the increase in H2O2 and decreased the NADP+/NADPH ratio that occurs following 

matrix detachment, thus supporting such an interpretation.  



 22 

Like MCF-10A and A549 cells, anchorage-independent growth of H460 lung cancer cells also 

requires increased generation of NADPH to mitigate oxidative stress that might limit tumor 

progression. In this case however, ROS were found to accumulate primarily in mitochondria, and 

this was mitigated by increased generation of NADPH through reductive glutamine metabolism, 

which is normally only observed during hypoxia in a HIF-1α−dependent manner. Thus, in H460 

spheroids, reductive carboxylation of α-KG formed from glutamine is catalysed by IDH1 in the 

cytoplasm, independently of HIF-1α and hypoxia; this provides isocitrate, which is then imported into 

mitochondria where it is oxidised back to α-KG by IDH2, thereby providing reducing equivalents to 

fortify mitochondrial ROS defences (Jiang et al., 2016). During this process, cytoplasmic NADPH 

depletion resulting from reduction of α-KG by IDH1 is restored by the PPP, and so reducing 

equivalents from the PPP are transferred to mitochondria (Figure 6a). Clustering of detached tumor 

cells represents another strategy that aids anchorage-independent growth, because clustering 

stimulates HIF-1α−mediated mitophagy that limits ROS production and in so doing increases 

dependence on glycolysis and reductive carboxylation of glutamine; this forced use of OXPHOS 

decreases survival of detached cells (Labuschagne et al., 2019). 

More recently it was observed that maintenance of fatty acid synthase (FASN) activity in mouse 

embryonic fibroblast (MEF) cells expressing oncogenic K-RASG12D, HER2(A775_G776insYVMA) or 

the PyMT antigen is an absolute requirement during the switch from 2D to 3D growth in colony 

formation assays (Bueno et al., 2019). Pharmacological or genetic inhibition of FASN in MEF lines 

harbouring these oncogenes prevented colony formation. Failure to grow upon inhibition/knockout 

of FASN was attributed to perturbation of glycolysis and mitochondrial function. In particular, 

inhibition/knockout of FASN caused a decrease in IDH1-catalysed reductive carboxylation due to 

accumulation of citrate/isocitrate. This occurred because loss of FASN activity caused a build-up of 

acetyl-CoA which inhibited ATP-citrate lyase, thereby increasing citrate. The inhibition of IDH1 by 

citrate/isocitrate resulted in an increase in mitochondrial ROS, decreased assembly of complex I of 

the electron transport chain into functional super-complexes and a stalling of respiration. This is 

consistent with the notion that IDH1 is necessary for anchor-independent growth and tumorigenesis. 

A common theme that emerges from studies into anchorage-independent cell growth is that 

treatment with antioxidants, such as NAC or Trolox (a water-soluble vitamin E derivative), can both 

rescue the metabolic defects caused by ECM deprivation and increase growth in soft agar (Bueno 

et al., 2019; Jeon et al., 2012; Schafer et al., 2009). This raises the question of whether antioxidants 

promote transformation of mammary epithelial cells. Consistent with this, upregulation of HO-1 

protects against anoikis (Dey et al., 2015) and conversely, knockdown of NQO1 renders non-small 

cell lung cancer cells more susceptible to anoikis (Madajewski et al., 2016). 

 

6h) Oxidative stress represents a barrier to the metastatic spread of cancer 
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For tumor cells to metastasise they need to undergo intravasation in order to enter the bloodstream, 

where they are exposed to a substantially higher O2 tension than their site of origin. They may also 

experience oxidative stress whilst migrating into the circulation, or before they extravasate to invade 

a distant organ (Nieto et al., 2016). This phase of tumorigenesis is inefficient, and its success 

requires plasticity on the part of the metastasising cell. Experiments in mice involving subcutaneous 

or intravenous injection of efficient metastasising melanomas revealed that the subcutaneous route 

of administration was substantially more effective than the latter in forming tumors (Piskounova et 

al., 2015). As ROS and GSSG levels were higher in circulating melanoma cells and metastatic 

melanoma cells than in subcutaneous tumors, and treatment with NAC increased the frequency of 

melanomas in the blood and the metastatic disease burden, it was reasoned the bloodstream is a 

pro-oxidant environment that provoked oxidative stress and impeded metastasis. Consistent with 

this view, metastatic nodules in the liver, pancreas and lung from injected melanoma cells had higher 

levels of NADPH and NADP+ than did subcutaneous tumors, and this was associated with increased 

contribution of glucose to serine and glycine levels, augmented folate pathway activity and an over-

abundance of the mitochondrial ALDH1L2, and to a lesser extent cytoplasmic MTHFD1 (Figure 6b) 

(reviewed by (Ducker and Rabinowitz, 2017)). Thus, upregulation of these NADPH-generating 

enzymes may allow metastasising tumor cells to survive in the bloodstream and invade distant 

organs (Piskounova et al., 2015). These authors also recognised that folate metabolism was not 

solely responsible for NADPH generation that drives metastasis, and that the PPP and malate 

pathways likely also contribute. 

Whilst high ROS levels limit metastatic spread of melanoma cells, those that are successful 

appear to be selected by their ability to use lactate as an energy source. This is possible because of 

heterogeneity in expression of the lactate transporter MCT1 (SLC16A1) in tumor cells (Tasdogan et 

al., 2020). Antagonism of MCT1 with the selective inhibitor AZD3965, shRNA knockdown, or gene 

editing, has been shown to decrease the number of circulating melanoma cells and metastatic 

tumors arising from subcutaneous transplantation of melanoma cells, a process rescuable by 

treatment with NAC. Inhibition of MCT1 in melanoma cells increased ROS levels, decreased the 

abundance of GSH, NADPH and flux through the oxidative arm of the PPP. It was concluded that 

inhibition of MCT1 would decrease flux through the oxidative arm of the PPP because lactate uptake 

is linked with proton flux, and so the increase in pH would increase glycolysis by activating 

phosphofructokinase and suppressing G6PD activity. 

 

6i) Evidence that ROS have diverse effects on different forms of metastatic disease, and the 
conundrum posed by antioxidants 

Conflicting data exist relating to the effects of oxidative stress on metastasis. This likely reflects 

heterogeneity in redox thresholds for pathways controlling proliferation, mobility and survival in 

different tumor cells. These are presumably dictated by the source of ROS and the subcellular 
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compartments affected, influenced by variables including the: oncogenes activated; status of 

members of the antioxidant transcription factor network; extent to which neoplastic cells toggle 

between epithelial and mesenchymal phenotypes. In the latter case, oscillation between EMT and 

MET enables invading tumor cells to adapt to new environments (Dongre and Weinberg, 2019; Lu 

and Kang, 2019). It is becoming clear that the ability of cancer cells to adopt a hybrid 

epithelial/mesenchymal status is controlled by a numer of “phenotypic stability factors” such as 

grainyhead-like 2 (GRHL2), ovo-like zinc finger 2 (OVOL2), ∆Np63α and NUMB, which stabilise such 

hybrid phenotypes (Aljagthmi et al., 2019; Bocci et al., 2017; He et al., 2020; Wu et al., 2017), and it 

could be hypothesised that the plasticity conferred by GRHL2, OVOL2, ∆Np63α and NUMB is pivotal 

in determining the ability of tumor cells to withstand oxidative stress. 

As discussed above, premalignant cells must adapt to the added ROS burden caused by 

activated oncogenes which places extra demands on their antioxidant systems. Consistent with this, 

knockout of antioxidant defences provided by Nrf2 or Tigar markedly decreases development of 

PanIN lesions in K-RASG12D cancer models (Cheung et al., 2020; DeNicola et al., 2011). 

Counterintuitively, whilst high ROS levels can impede progression of tumorigenesis, there are 

examples where they actually enhance metastasis. Thus, in the K-RASG12D pancreatic cancer model, 

whilst knockout of Nrf2 or Tigar delays the appearance of PanIN lesions, their loss also increases 

metastasis to the lung and other organs, with resulting tumors having high ROS levels and exhibiting 

mesenchymal characteristics (Cheung et al., 2020). The increase in metastatic potential of 

KrasG12D/+;Tigar-/- tumors was associated with activation of ERK signaling, attributed to 

downregulation of the dual-specificity phosphatase DUSP6. Ectopic expression of DUSP6 in Tigar-

null cells was found to inhibit migration and the mesenchymal phenotype, as did treatment with NAC 

or the mitochondrially-targeted antioxidant mito-TEMPO. In tail vein injection assays, treatment with 

NAC inhibited colonisation of the lung by Tigar-null pancreatic tumor cells. Besides the ability of 

antioxidants to inhibit metastatic capabilities of Tigar-null pancreatic tumor cells, mito-TEMPO 

prevented lung metastasis of orthotopically-injected MDA-MB-231 breast cancer cells in SCID mice 

(Porporato et al., 2014) and transgenic overexpression of mitochondrially-targeted CAT diminished 

invasive breast cancer in MMTV-PyMT mice (Goh et al., 2011). Collectively, these findings suggest 

that antioxidants might trigger reductive stress in certain types of tumor cell. 

In contrast to the observation that NAC and mito-TEMPO suppress metastatic spread of 

pancreatic tumors, an increasing literature indicates that antioxidants can support metastasis of 

melanoma and lung tumors. In mouse experiments, NAC and Trolox increase metastasis to the lung 

of melanoma cells harboring oncogenic B-RAFV600E with melanocyte-specific loss of Pten expression 

(Bagati et al., 2019; Le Gal et al., 2015) as well as human-derived metastasizing melanoma cells 

(Piskounova et al., 2015). Also, NAC and vitamin E increase metastasis to the liver, kidney, heart 

and rib cage of lung cells harboring oncogenic K-RASG12D (Wiel et al., 2019). 
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The ability of NAC and vitamin E to increase metastasis of K-RASG12D−driven lung tumors was 

attributed to the ability of antioxidants to reduce the levels of ROS and free heme, thereby stabilising 

BACH1, which in turn transcriptionally activated Hk2 and Gapdh and increased glucose uptake, 

glycolysis and lactate secretion by Mct1 (Wiel et al., 2019). Importantly, BACH1 has been reported 

to be a master regulator of metastasis (Lee et al., 2013), and upregulates expression of metastasis-

associated genes such as MMP1, MMP3, CXCR4, CTGF, PGK2 and ROBO1 (Liang et al., 2012). 

Also, BACH1 can suppress mitochondrial activity by repressing expression of the electron transport 

chain genes ATP5D, COX15, UQCRC1, ATP5J, SLC25A22 and TIMM8B, and decrease glycolysis 

and the TCA cycle by increasing expression of pyruvate dehydrogenase kinase, thus inactivating 

phosphorylation of pyruvate dehydrogenase (Lee et al., 2019). Similar to the effects of antioxidants 

on K-RASG12D−driven lung tumorigenesis, it has been proposed that loss of Keap1 increases K-

RASG12D−driven tumor metastasis via activation of Bach1. Thus knockdown of Keap1 in 

KrasG12D/+;Trp53-/- tumors increased metastasis, but in this case the increase in Bach1 upon 

knockdown of Keap1 was due to Nrf2-mediated induction of Hmox1, which increased Bach1 stability 

by degrading heme (Lignitto et al., 2019). Similarly, in human HT1080 fibrosarcoma cells that 

harbour N-RAS and IDH1 mutations, ATF4-mediated induction of HMOX1 increased metastatic 

potential (Dey et al., 2015). Taken together, these observations suggest that administration of 

antioxidants can substantially affect the metastatic potential of cancer, but that this is probably 

influenced by tumor type and organ subject to colonisation.  

Dormant cancer cells that remain following therapy, and those that give rise to recurrent drug-

resistant tumours during relapse, have to withstand oxidative stress resulting from their inability to 

utilise glucose as an energy source resulting in a switch to fatty acid β-oxidation. In particular, 

inhibitors of the receptor tyrosine kinase-RAS-MAPK pathway increase ROS (Krall et al., 2017), as 

does loss of oncogenic MYC, RAS and Neu/Her2 signaling (Havas et al., 2017). In an MMTV-

rtTA::TetO-Her2 mouse model, the small population of residual cells that survived in tumors following 

loss of oncogenic Her2 were found to upregulate Nrf2 in response to increased ROS (Fox et al., 

2020). Moreover, constitutive activation of Nrf2 accelerated tumor recurrence, and knockdown of 

Nrf2 diminished recurrent tumor growth in vivo. Understandably, these are highly prescriptive models 

that for experimental reasons are limited to just several types of cancer. Because of the added ROS 

burden incurred during initiation, progression and metastasis it is unclear how dormant and recurrent 

cancer cells with NRF2 already upregulated adapt to oxidative stress during and after chemotherapy. 

 
7. Therapeutic value of manipulating redox status in tumour cells 

Misunderstandings about how oxidative stress influences different stages of tumorigenesis is 

emphasised by the poor responses of at-risk patients given antioxidant therapy (Gill et al., 2016; 

Goodman et al., 2011). In animal carcinogenesis models, induction of endogenous antioxidant and 
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detoxification systems by cancer chemopreventive agents confers protection against initiation of 

carcinogenesis caused by the subsequent exposure to chemical carcinogens (Wattenberg, 1985). 

However, administration of antioxidants per se may accelerate the later stages of certain types of 

cancer (Bagati et al., 2019; Wiel et al., 2019), results that support the notion that antioxidants have 

distinct effects on different stages of tumorigenesis and in a tumor type-specific fashion. 

Like vitamin D, vitamin C sufficiency has been linked with innate and adaptive immune response 

to infective agents (Sorice et al., 2014). In this regard, preclinical studies have shown that high dose 

vitamin C does exert anticancer effects in immunocompetent mice, where it can delay tumor growth 

in a T cell dependent fashion, both through enhanced cytotoxicity of adoptively transferred T cells 

and cooperatively with immune checkpoint therapeutics (Magri et al., 2020). While a number of high 

dose vitamin C clinical trials have been completed (Table 2), to date the results have not been 

encouraging. Perhaps design of future trials will benefit from the immunological approach, but for 

this tactic to reach general acceptance, a number of remaining questions need to be addressed (e.g. 

(Carr and Cook, 2018)). 

It can be argued that all types of cytotoxic cancer drugs cause direct, or indirect, oxidative stress. 

Nevertheless, a number of drugs have been developed using redox platforms to target various 

pathways. There are assorted categories that define their mechanisms of action: i) Adjuvants that 

protect normal tissues when given in combination with standard cancer drugs (amifostine, MESNA, 

NOV-002); ii) Drugs that interfere directly with GSH homeostasis (BSO); iii) Those that act as soft 

electrophiles in a chemoprevention setting by stimulating expression of ARE-regulated gene 

expression (sulforaphane); iv) Hard electrophiles that covalently modify thiol groups in target 

proteins (arsenic trioxide, Auranofin, PX-12, Telcyta); v) Modification of target thiols through Michael 

addition (ethacrynic acid, PRIMA-1, APR-246). While this collection of drugs has diverse 

characteristics, the common theme is the nucleophilicity of cysteine thiol groups, whether within 

specific drug targets, or in the context of general stress response. Perhaps because of the critical 

importance of redox homeostasis in both normal and tumor cells and aspects of functional 

redundancy, limited clinical success has been an essential characteristic of this group of redox 

targeted drugs, nevertheless efforts to discover and develop new agents continue. 

      In context, many cancer cell lines are relatively resistant to death by BSO-initiated GSH 

depletion. This may be because TXN-based antioxidant systems compensate for depletion of GSH 

(Harris et al., 2015), or because by upregulating HSF1 or increasing expression of deubiquitinases, 

tumor cells acquire tolerance of the effects of oxidative stress by attenuating their sensitivity to 

proteotoxicity and ER stress caused by protein misfolding (Harris et al., 2019). Together, these 

findings suggest that tumors can frequently circumvent redox targeting and that combinatorial 

approaches may be more successful. In fact, a number of combinatorial clinical trials are emerging 

with new redox active agents.  For example, erastin is a small molecule modulator of voltage 

dependent anion channels (VDAC2/VDAC3, (Yagoda et al., 2007)) and of the GSH transporter xCT 
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(Dixon et al., 2012). Treatment of cells with erastin causes GSH depletion, leading to inhibition of 

GPX4, which, in turn, increases ROS exposure (presumably through Fenton chemistry), triggering 

ferroptosis (Yang et al., 2014). Although erastin does not possess optimal therapeutic drug-like 

properties, analogues are under development with a view to clinical testing (Larraufie et al., 2015). 

Perhaps unexpectedly, GLS1 has also been shown to be a viable redox drug target for a new small 

molecule, CB839.  NRF2 activation facilitates its antitumor effects, since in KEAP1 mutant lung 

cancer cells, GLS1 inhibition by CB839 reduces glutamine, thereby diminishing glutamate, which in 

turn limits cysteine and GSH levels (Sayin et al., 2017). Presently, lung cancers are a primary focus 

for clinical trials for CB839, but the effectiveness of GLS1 inhibition appears to be both tumor-type 

and oncogene signaling dependent (Romero et al., 2017). Also, indirectly impacting redox 

homeostasis and inducing cell death through ROS, a new IDH1 inhibitor, Ivosidenib (AG-120), was 

shown to selectively target different mutants of IDH1 without apparent off-target effects on other 

dehydrogenases. Multiple clinical trials in IDH1 mutant cancers are underway using this inhibitor in 

combination with other anticancer drugs (Popovici-Muller et al., 2018).  

There are examples where drugs can indirectly target redox pathways and homeostasis. For 

example, when solid cancers disseminate, metastases frequently have phenotypic characteristics 

that are distinct from the parent tumor cells. In melanomas, circulating cells that go on to form distant 

metastatic lesions have reversible adaptive changes that select for survival in a more biologically 

oxidative environment. Such adaptations include increased dependence on NADPH generating 

enzymes in the folate pathway (Piskounova et al., 2015) and increased expression of the 

monocarboxylate transporter, MCT1 (Tasdogan et al., 2020). Since chemotherapy is one of the few 

approaches available for the treatment of metastases, interference with one carbon metabolism with 

drugs such as methotrexate or impeding lactate/pyruvate metabolism and transport have potential 

as indirect means to interfere with redox regulation and restrict metastasis. Sulfasalazine and erastin 

are unrelated chemical structures that have promiscuous binding affinities for a number of 

intracellular targets. However, they do share the ability to inhibit the xCT glutamate cystine antiporter 

and when used in combinations, have the potential to enhance the cytotoxic effects of other 

anticancer agents (Gout et al., 2001; Sayin et al., 2017). Moreover, combined inhibition of GSH 

(sulfasalazine) and TXN/TXNRD (Auranofin) pathways has been found to lead to synergistic cancer 

cell death implying roles for these complementary antioxidants in therapeutic intervention (Harris et 

al., 2015).     

Radiation therapies cause release of ROS at levels contingent upon dose and time. There is a 

vast literature on stress responses consequent to radiation and general consensus that the nexus 

of TP53/APE1/NRF2 transcription factors contribute to a regulated response. Moreover, implicit in 

assessing tumor and normal tissue responses is the concept of dose versus time thresholds that 

determine the extent of response (Murray et al., 2018). As a translational biomarker, it has been 

possible to titrate the ROS caused by radiation exposure by measuring the occurrence of S-
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glutathionylated serine protease inhibitor (Serpin) in the blood of prostate cancer patients (Zhang et 

al., 2019). Interestingly, in a phase I clinical trial, pharmacological administration of vitamin C 

intravenously, in combination with gemcitabine and radiotherapy, has been found to be well tolerated 

and effective, suggesting redox biology could be used to selectively target tumor tissue whilst 

protecting normal tissue (Alexander et al., 2018). 

 

8. Concluding comments 
Throughout tumorigenesis, cancer cells have to endure oxidative stress at initiation, upon matrix 

detachment, during passage in the circulation, and when disease recurs following therapy. These 

episodes can be mitigated by tumor cells through various adaptive strategies, each of which ensures 

ROS levels are restricted to a dynamic range that allows proliferation whilst avoiding cell death. 

During initiation, preneoplastic cells typically experience a high and sustained oncogene-generated 

ROS burden and they are therefore obliged to upregulate their antioxidant defences, which often 

entails overexpression of NRF2-regulated antioxidant genes, but can also involve oncogene-directed 

phosphorylation of PKM2 that increases NADPH production by diverting glucose metabolism down 

the PPP. During cancer progression, cooperation between neoplastic cells and CAFs and TAMs in 

their microenvironment results in ROS-stimulated migration and anchorage-independent growth of 

tumor cells, requiring them to reconfigure metabolism to increase NADPH generation via the actions 

of G6PD and/or IDH. During metastasis, circulating tumor cells experience high ROS levels following 

intravasation and existence in the blood, again requiring them to increase NADPH production, but in 

this case through increased use of the folate pathway (one-carbon metabolism) and upregulation of 

ALDH1L2, and to a lesser extent MTHFD1, whilst also ensuring glycolysis is maintained. In instances 

of post-therapy dormancy/recurrence, tumor cells depend on NRF2-directed gene expression to 

survive the switch to β-oxidation of fatty acids, rather than glycolysis, for energy. 

Although overexpression of antioxidant genes, increased GSH synthesis, and increased NADPH 

generation will prevent oxidative stress, it is not certain that the ‘roll out’ of the different tiers of 

oxidative stress defences during tumorigenesis and recurrence is orchestrated in precisely the order 

proposed above, and thus clarifying the stage-specific strategies employed by tumor cells warrants 

further study. It may be more plastic than implied, and depend largely on the severity of the ROS 

burden preneoplastic cells have to counter at initiation of tumorigenesis, and also on the subcellular 

compartments where oxidative stress arises. For example, a high ROS burden at initiation may 

necessitate stochastic genetic changes including somatic mutations in NFE2L2 or KEAP1 that are 

irreversible, whereas a lower ROS burden might be accommodated by reversible activation of 

members of the antioxidant transcription factor network and NADPH-generating pathways. It seems 

likely the adaptive mechanisms adopted at initiation will affect profoundly how tumor cells 

subsequently behave during cancer progression and to stimuli that dictate EMT and MET. It is 

striking that, as described above, adaptation to oxidative stress during cancer progression and 
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metastasis entails bolstering NADPH-dependent antioxidant defences within the mitochondrion, 

which might not be so important during initiation and promotion of tumorigenesis. These 

observations suggest that mitochondrial function in cancer cells, and the dysregulation of particular 

mitochondrial metabolic pathways, may play a pivotal role in dictating which adaptive mechanisms 

are ‘available’ in the later stages of tumorigenesis. It is also unclear the extent to which constitutive 

activation of NRF2 at initiation influences either the ability of tumor cells to adapt to oxidative stress 

during, and after therapy, or the necessity of tumor cells to adapt to oxidative stress during, and after 

therapy, and thus increases the likelihood of recurrent disease. 

As we are only beginning to appreciate that redox homeostasis is of critical importance in cancer, 

there remain issues that need to be addressed. It is for example unclear how the antioxidant 

transcription factor network operates during different stages of tumorigenesis. In particular, the: i) 
ROS thresholds that activate individual members of the network; ii) extent to which thresholds for 

individual transcription factors change during the course of tumorigenesis, and upon constitutive 

activation of NRF2 or AP-1, or loss of TP53 function; iii) degree of cross-talk between the factors 

during tumorigenesis; iv) impact of other forms of stress, such as metabolic stress, hypoxia and 

inflammation, on the thresholds. An area that warrants further work is one that will determine the 

extent to which oxidative stress drives EMT, and the contribution of mitochondrial ROS to this 

process. Clarifying redox thresholds that influence EMT and MET will likely illuminate key 

biochemical pathways that influence the ability of different types of tumor cell to metastasise. It will 

also be important to provide a better understanding of factors controlling the acetylation of SOD2, 

and thus cause SOD2 to adopt prooxidant rather than antioxidant properties, during tumorigenesis. 

Lastly, the effects of antioxidants on the progression and metastatic stages of tumorigenesis are 

perplexing. Hopefully research that provides a better understanding of how oscillations between 

EMT and TME are controlled will clarify the adaptive mechanisms employed by different types of 

tumor cell in order to colonise distant tissues. The effects of antioxidants on ERK signaling in different 

tumor types should be further investigated, as should the possibility that antioxidants stimulate 

reductive stress in certain tumor types. Addressing these areas will improve therapeutic strategies. 
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Box 1 
Chemical properties and sources of ROS and RNS 
Amongst different ROS [i.e. superoxide anion radical (O2

–); hydrogen peroxide (H2O2); hydroxyl 

radical (HO)] and RNS [i.e. nitric oxide (NO); peroxynitrite anion (ONOO–)], each has distinct 

physicochemical properties and half-lives. Amongst these ROS, HO is the most oxidising, followed 

by O2
–, with H2O2 as a relatively weak oxidant  (Buettner, 1993). Whilst H2O2 and NO are 

indispensable as signaling molecules, O2
– and ONOO– are highly reactive and can damage 

intracellular macromolecules, including polyunsaturated fatty acids (PUFAs) and nucleic acids. 

Oxidation of PUFAs by ROS leads to lipid peroxidation, where peroxidised PUFAs, together with 

their breakdown products (e.g. 4-hydroxy-2-nonenal (4-HNE)), can act as signaling molecules to 

stimulate inflammation, apoptosis or ferroptosis (Breitzig et al., 2016; Dodson et al., 2019). 

Principal intracellular sources of ROS include: leaking of electrons to O2 in mitochondria by 

reverse electron transport at complex I, or reaction between a semiquinone form of CoQ with O2 at 

complex III of the respiratory chain (Murphy, 2009); reduction of O2 to O2
– by NADPH oxidases 

(NOX1-5 and DUOX1/2) during growth factor signaling (Brown and Griendling, 2009); production of 

H2O2 during protein folding within the endoplasmic reticulum (ER) (Ye et al., 2017). 

Less significant sources of ROS arise from the activities of cytochrome P450 (CYP), monoamine 

oxidase, xanthine oxidase, cyclooxygenase (COX), glycolate oxidase, hydroxyacid oxidase, 

aldehyde oxidase and amino acid oxidase (Sies and Jones, 2020). Formation of the particularly 

reactive HO from H2O2 occurs through Fenton chemistry that typically involves transition metal ions 

of iron, copper or manganese. The principal RNS in the cell is the vasodilator NO, produced by 

nitric oxide synthase (NOS) from L-arginine, with the inducible NOS2 isoenzyme largely responsible 

during inflammation. Reaction between NO and O2
– yields ONOO– (Radi, 2018). 

 

Box 2 
Antioxidant defences 
To prevent unrestrained accumulation of ROS and RNS, cells contain a spectrum of antioxidants. 

Non-catalytic small-molecules that directly scavenge ROS and RNS include endogenously-

synthesised bilirubin, α-lipoic acid, melatonin, melanin, GSH and uric acid, as well as exogenously-

derived vitamin E, vitamin C, β-carotene and plant polyphenols (Halliwell and Gutteridge, 2015). 

Amongst these, GSH is noteworthy because its synthesis is subject to homeostatic regulation (see 

below) and is often increased in a variety of cancer types (Gamcsik et al., 2012). 
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Catalytic antioxidants that scavenge O2
– include cytosolic copper/zinc superoxide dismutase 

(CuZnSOD, or SOD1), mitochondrial manganese MnSOD (SOD2), extracellular EC-SOD (SOD3), 

each of which catalyses the conversion of O2
– to H2O2 and O2 (Sheng et al., 2014). SOD2 is of 

particular importance for viability as its knockout in mice results in perinatal death. Collectively, SOD 

isoenzymes can attenuate NOX-dependent redox signaling associated with activation of receptor 

tyrosine kinases and G-protein-coupled receptors, probably by facilitating production and 

maintenance of a diffusible H2O2 signal (Parascandolo and Laukkanen, 2019). Both SOD1 and 

SOD2 protect against spontaneous tumorigenesis, and whilst they have been referred to as tumor 

suppressors they may also be upregulated during tumorigenesis (Gill et al., 2016). 

Enzymes that scavenge H2O2 include catalase (CAT), which converts H2O2 to H2O and O2 

(Kirkman and Gaetani, 2007), as well as peroxiredoxins (PRDXs, also called PRXs) and glutathione 

peroxidases (GPXs) that reduce H2O2 to H2O (Brigelius-Flohe and Maiorino, 2013; Elko et al., 2019). 

In this context, the PRDXs are of particular physiological significance because they are abundant, 

have high catalytic activities, and reduce >90% of cellular peroxides; they are subdivided into 

‘Typical’ 2-Cys PRDX1-5, ‘Atypical’ 2-Cys PRDX5, and 1-Cys PRDX6. Importantly, reduction of H2O2 

by PRDX1-5 is at the expense of oxidising TXN (simplified to thioredoxin-(SH)2), which results in 

condensation of two SH groups, and yields thioredoxin-S2 with an intramolecular disulfide bridge 

(Perkins et al., 2015). By contrast, reduction of H2O2 by the 1-Cys PRDX6 requires GSH, rather than 

TXN (Fisher, 2017). Reduction of H2O2 by GPXs also requires GSH, but in this case it results in 

condensation between the Cys thiol (-SH) groups of two GSH molecules, yielding GSSG that 

contains an intermolecular disulfide bridge (Deponte, 2013). Besides limiting ROS levels, PRDXs 

and GPXs also counter the actions of RNS by contributing to the elimination of NO, the reduction 

of ONOO– and also protein denitrosylation (Benhar, 2018). 

In addition, sestrins (SESN1, 2 and 3) exert indirect antioxidant activity (Sanchez-Alvarez et al., 

2019), in part by activation of transcription factor nuclear factor-erythroid 2 p45-related factor 2 

(NRF2) and inhibition of mTORC1 (Rhee and Bae, 2015). 

 

Box 3 
a) Heme and iron-dependent proteins in antioxidant defences 

Heme oxygenase isoenzymes (HO-1/2, encoded by HMOX1/2) serve as indirect antioxidants 

because they prevent free heme released from hemoproteins during oxidative stress from forming 

free radicals, and also because they participate in formation of bilirubin (Gozzelino et al., 2010). 

Proteins that sequester transition metals, or transport them from the cell, are also indirect-acting 

antioxidants because they suppress formation of HO from H2O2 by Fenton chemistry: these include 

ferritin (comprising light FTL1 and heavy FTH1 subunits), ferroportin (FPN1/SLC40A1), 

metallothionein and ceruloplasmin (Arosio et al., 2009; Pietrangelo, 2017). The ability of FTL1, FTH1 
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and FPN1 to limit intracellular levels of free intracellular iron helps prevent the redox cycling of 

Fe2+/Fe3+ that leads to lipid peroxidation and the likelihood of ferroptosis (Manz et al., 2016). 

b) Drug-metabolising enzymes in antioxidant defences 
As certain xenobiotics are pro-oxidant, drug-metabolising enzymes are often regarded as indirect-

acting antioxidants. These include the phase I aldehyde dehydrogenase (ALDH) family, the aldo-

keto reductase (AKR) family, carbonyl reductases (CBR), NAD(P)H:quinone oxidoreductase 

isoenzymes (NQO1 and 2) and short-chain dehydrogenases/reductases, as well as the phase II 

glutathione S-transferase (GST) family and the UDP-glucuronosyl transferase (UGT) family. Their 

actions prevent quinones and hydroquinones from redox-cycling, and electrophiles and lipid 

peroxidation products from depleting GSH (Hayes et al., 2005; Jin and Penning, 2007; Oppermann, 

2007; Rodriguez-Zavala et al., 2019; Rowland et al., 2013). Moreover, drug-metabolising enzymes, 

along with GPX4, inactivate 4-HNE and other lipid-derived signaling molecules that can trigger 

apoptosis and ferroptosis (Breitzig et al., 2016; Dodson et al., 2019). 

c) Sirtuin 3 as an indirect antioxidant 
Sirtuin 3 (SIRT3) is a NAD+-dependent deacetylase involved in many aspects of mitochondrial quality 

control (Gomes et al., 2020; Meng et al., 2019). By catalysing the deacetylation of SOD2, SIRT3 

increases scavenging of O2
– in mitochondria, and by catalysing the deacetylation of IDH2, SIRT3 

increases generation of NADPH in mitochondria (Kincaid and Bossy-Wetzel, 2013). Furthermore, 

SIRT3 exerts multiple effects on mitochondrial metabolism by deacetylating acetyl-CoA synthase 2, 

long-chain acyl-CoA dehydrogenase and liver kinase B1 (Gomes et al., 2020). 

 

Box 4 
a) Glutathione synthesis and salvage 

GSH homeostasis is achieved through de novo synthesis and salvage pathways. An ancillary tier of 

indirect-acting antioxidant proteins exists that supplies glutamate, cysteine and glycine as building 

blocks for GSH synthesis. These include glutamine transporters, GLS1 and GLS2, the cystine-

glutamate SLC7A11/xCT antiporter and the glycine transporter SLC6A9, as well as components of 

serine-glycine one-carbon metabolism that produce cysteine from serine and glycine (Ducker and 

Rabinowitz, 2017; Koppula et al., 2018). Also in this category, are the GSH biosynthetic enzymes 

glutamate-cysteine ligase (GCL, previously called γ-glutamylcysteine synthetase (γGCS), 

comprising catalytic (GCLC, or γGCSh) and modifier (GCLM, or γGCSl) subunits), and glutathione 

synthetase (GSS), in which GCL catalyses the initial rate-limiting step and GSS the second and final 

step (Lu, 2013). In cancer cells, expression of GCLC and GCLM are important determinants of 

sensitivity to both chemo- and radio-resistance (Lin et al., 2018; Liu et al., 2017), and high levels can 

be associated with poor prognosis following surgery (Sun et al., 2019). The γ-glutamyl cycle is 

responsible for the primary de novo synthesis of GSH, with the rate-limiting enzyme being GCL. 

Recycling of glutamate, cysteine and glycine salvages GSH, a process accomplished by various 
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enzymes including the membrane-associated hydrolase GGT that acts on GSH, GSSG and GS-

adducts. CHAC1 and CHAC2 as broad specificity γ-glutamyl cyclotransferases can degrade GSH: 

CHAC1 converts GSH to 5-oxoproline and cysteinylglycine (Oakley et al., 2008), and its expression 

may be dysregulated in breast and ovarian cancer (Goebel et al., 2012). 

b) Thioredoxins in redox homeostasis 
The ‘cytosolic’ TXN1 and mitochondrial TXN2 are both small reductases that catalyse cysteine thiol-

disulfide exchange reactions via a Cys-Gly-Pro-Cys motif in their active-sites (Lu and Holmgren, 

2014). The antioxidant function of TXNs is demonstrated principally through their abilities to transfer 

electrons to oxidised PRDX1-5, methionine sulfoxide reductases and redox-sensitive transcription 

factors, thereby allowing their substrates to be reduced back to a more active state. This process 

results in oxidation of Cys residues in the active-sites of TXN1 or TXN2, which can in turn be reduced 

by the selenoproteins TXNRD1 or TXNRD2, respectively, using NADPH as a cofactor. Thus TXN1/2-

mediated reduction of PRDXs, methionine sulfoxide reductases and transcription factors is at the 

expense of NADPH and results in accumulation of NADP+. Similar to other redox pathways, the TXN 

antioxidant system is upregulated in a wide range of cancers (Jia et al., 2019) and is associated with 

poor prognosis (Leone et al., 2017). Overlap exists between the TXN system and GSH insofar as 

oxidised TXN1 can be reduced by glutaredoxins (GRX1 and 2), using GSH as a cofactor, and so 

under certain circumstances can replace TXNRD1 (Deponte, 2013; Ren et al., 2017). Furthermore, 

GSSG can be reduced by the TXN system, creating redundancy between the TXN- and GSH-based 

antioxidant systems. In tumors with compromised GSH homeostasis, inhibition of TXN/TXNRD 

induces synthetic lethality (Yan et al., 2019). 

 

Box 5 
NADPH-based redox couples are central to antioxidant defences 
NADPH is a fundamentally important metabolite in the reductive biosynthesis of macromolecules, 

and is indispensable for cellular antioxidant defences. By binding to CAT, NADPH prevents 

inactivation of the enzyme by H2O2 and maintains its antioxidant capacity (Kirkman and Gaetani, 

2007). Importantly, NADPH provides reducing equivalents that allow GSH to be generated from 

GSSG and thioredoxin-(SH)2 to be generated from thioredoxin-S2 by the catalytic actions of 

glutathione reductase (GSR) and thioredoxin reductases (TXNRD1 and TXNRD2), respectively 

(Ying, 2008). In turn, GSH and TXN enable GPXs and PRDXs to fulfil their antioxidant roles. To 

support proliferation, NADPH synthesis is frequently elevated in tumor cells (Purohit et al., 2019). 

As NADPH exists as a redox couple with NADP+, and is constantly oxidised in aerobic conditions, 

it has to be continuously regenerated. This is primarily achieved by enzymes in the oxidative arm of 

the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PD) and 6-

phosphogluconate dehydrogenase (6PGD) that provide ribose-5-phosphate, malic enzymes (ME1, 

2 and 3) that provide pyruvate for the TCA cycle, and the serine-driven one-carbon metabolism 
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enzymes methylenetetrahydrofolate dehydrogenase (MTHFD2), which forms the purine precursor 

10-formyl-tetrahydrofolate, and aldehyde dehydrogenase 1L2 (ALDH1L2) that releases CO2 from 

10-formyl-tetrahydrofolate (Ciccarese and Ciminale, 2017). Amongst these enzymes, ME1 has been 

reported to physically interact with, and activate, both 6PGD and G6PD, suggesting a level of 

coordinated regulation of these NADPH-generating enzymes that may be relevant in cancer cells 

(Yao et al., 2017). Under hypoxic conditions, the production of NADPH by MTHFD2 in MYC-

transformed tumor cells can be enhanced by inducing serine hydroxymethyltransferase (SHMT2), 

which encodes an enzyme that catalyzes transfer of CH3 from serine to tetrahydrofolate and so 

increases substrate availability for MTHFD2 (Ye et al., 2014). 

Other enzymes that generate NADPH include isocitrate dehydrogenase (IDH1/2), nicotinamide 

nucleotide transhydrogenase (NNT) and glutamate dehydrogenase (GDH1/2). The NADP+-

dependent IDH1 and IDH2 catalyse reversible oxidative decarboxylation of isocitrate to yield α-

ketoglutarate (α-KG) and CO2, whereas NNT transfers reducing equivalents from NADH to NADPH 

using the electron transport chain proton gradient (Purohit et al., 2019). Under hypoxic conditions, 

cancer cells can employ IDH2 to reductively carboxylate α-KG obtained anaplerotically from 

glutamine and produce citrate at the expense of NADPH, which is compensated for by increased 

oxidation of α-KG to succinyl-CoA that provides NADH, and is in turn used by NNT to produce 

NADPH (Mullen et al., 2014). GDH1 and GDH2 catalyse the reversible oxidative deamination of 

glutamate to α-KG using NAD(P)+ as cofactor (Plaitakis et al., 2017), but do not seem to contribute 

substantially to redox homeostasis (Fan et al., 2014b). 

Somatic mutations in IDH1 and IDH2 have been reported in a range of solid and hematological 

malignancies arising early during tumorigenesis and consistent with events representing driver 

mutations; the mutations are heterozygous and neomorphic as they result in production of the 

oncometabolite 2-hydroxyglutarate (Dang and Su, 2017). In this instance, IDH1/2 encoded by the 

mutant gene acquires the ability to catalyse NADPH-dependent conversion of α-KG to 2-

hydroxyglutarate as a consequence of substitutions that increases its affinity for NADPH and α-KG 

and cause loss of oxidative decarboxylation activity (Golub et al., 2019). The 2-hydroxyglutarate 

produced by mutant IDH1/2 inhibits competitively many 2-oxoglutarate−dependent dioxygenases, 

such as histone demethylases and DNA hydroxylases, and it is well established that this perturbs 

epigenetic mechanisms and thus cell differentiation. In addition, 2-hydroxyglutarate inhibits branched 

chain amino acid transaminases BCAT1 and BCAT2 that catalyse interconversion of 2-oxoglutarate 

with glutamate, resulting in a reduction in intracellular levels of glutamate and GSH in cells 

harbouring mutant IDH1 that renders them sensitive to oxidative stress when treated with an inhibitor 

of glutaminase (GLS1 and GLS2) (McBrayer et al., 2018). As discussed later, inhibition of IDH 

mutants impacts ROS levels and has anticancer potential. 
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Box 6 
Protein cysteines provide redox switches 
Cellular responses to ROS predicate on regulatory proteins containing thiol-based redox switches 

that when oxidised cause the protein to adopt new or distinct functions (Holmstrom and Finkel, 2014). 

Critical to the reactivity of individual cysteines within redox switches, is the apparent pK (pKa) of their 

thiol moieties. Proteins which are susceptible to oxidative modification contain cysteines with low 

pKa values that exist in the thiolate anion state at physiological pH, caused by the presence of 

adjacent basic amino acids. The various oxidation states of the thiol (SH)-containing side chain of 

cysteine within proteins creates a circumstance where quantitative changes in intracellular ROS can 

regulate protein activity. The thiol of cysteine as a thiolate anion (-S–) or cysteinyl radical (-S) is 

critical to its oxygen reactivity. Contingent upon the extent of oxidation, sulfenate (-SOH), sulfinate 

(-SO2H), sulfonate (-SO3H) or disulfide (-S−S-) species may be formed, with oxidation to sulfonate 

being essentially irreversible and requiring degradation of the protein to eliminate the modification. 

Also, S-glutathionylation (-SSG) and S-nitrosylation (-SNO) may result from exposure to ROS/RNS 

and sulfhydration/persulfidation (-SSH) from reaction with endogenous H2S (Yang et al., 2016a). 

S-glutathionylation may protect proteins from over-oxidation, or may alter their structure and 

function; thus, parallel to the kinase/phosphatase cycle is the S-glutathionylation cycle (Grek et al., 

2013). The forward protein S-glutathionylation reaction can be driven by GST Pi 1-1 (GST P1-1), 

which demonstrates several mechanisms of pleiotropy (Paaby and Rockman, 2013). In particular, 

GST P1-1 engages in promiscuous interactions with target proteins, identifying them as substrates 

for S-glutathionylation. GST P1-1 has catalytic cysteines near the surface of the substrate channel 

that can act as GS– donors. By contrast, in GST Omega 1-1 (GST O1-1), which catalyses 

deglutathionylation, the catalytic cysteine of each subunit is buried within the substrate channel, 

behaving as a GS– acceptor (Menon and Board, 2013). Deglutathionylation is also accomplished by 

GRX (Stroher and Millar, 2012) or SRXN1 (Findlay et al., 2006; Park et al., 2009). 

      With the exception of the sulfonate state, oxidised cysteines can be reduced, thereby recovering 

the protein’s homeostatic function. Oxidation of protein-S– to protein-SOH can be reduced by TXN 

and TXNRD, with NADPH as hydride donor. Similarly, protein-SSG and protein disulfide bridges 

formed from protein-SOH can be reduced by the actions of TXN, TXNRD, GSH, GSR, GST O1-1, 

GRX and NADPH. At higher ROS levels, protein-SOH may be further oxidised to protein-SO2H, 

some of which can be reduced to protein-SOH by SRXN1 (Akter et al., 2018). 

 

Box 7 
Functioning of the redox switch in PRDX, and associated “floodgate” hypothesis 
Antioxidant PRDX enzymes are a classic example of proteins regulated by redox. Each possesses 

a high-affinity H2O2-binding site, comprising a cysteine with a low pKa value that is readily oxidised, 

and therefore called a peroxidatic cysteine, or Cp (Perkins et al., 2015). In PRDX1-5, oxidation of 
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their CP residues by H2O2 to a sulfenic acid derivative results in formation of an intermolecular 

disulfide between the CP residue and another cysteine, the resolving Cys, or CR, present in the other 

subunit within the PRDX dimer. In turn, the CP−CR disulfide is reduced by the TXN1/2-TXNRD1/2-

NADPH system, thereby allowing regeneration of CP for reaction with H2O2, and completion of the 

catalytic cycle. For 1-Cys PRDX6, a monomeric enzyme with phospholipase activity that can reduce 

phospholipid hydroperoxides, its oxidised CP residue can be reduced by GSH, in a GST P1-

1−catalysed reaction (Fisher, 2017).  

As a consequence of their CP residues being oxidised to sulfinic acid, PRDXs can be inactivated 

under conditions where H2O2 levels are relatively high. This allows H2O2 to accumulate and fulfil 

signaling functions, where PRDXs are posited to act through peroxide floodgates (Wood et al., 2003). 

Inactivation of PRDXs can also occur through phosphorylation, providing a classic example of cross-

talk between kinase and redox signaling (Rhee et al., 2012).  Because of their abundance, sensitivity 

to oxidation and ability to physically interact with other proteins, PRDXs have been proposed to 

transduce H2O2 signaling through physical associations with other proteins (Rhee and Kil, 2017). 

 

 
 

Figure and Table legends 
  

Figure 1. Metabolic responses to acute oxidative stress. In cells under normal redox homeostatic 

conditions (A), glucose is principally oxidised by glycolysis to pyruvate, and via acetyl-CoA through 

the tricarboxylic acid cycle, with G6PD inhibited by NADPH and minimal flux through the PPP. 

However, upon acute oxidative stress (B), feedback inhibition of G6PD by NADPH is greatly 

diminished (1) and Cys residues in GAPDH (2), ATM (3) and complexes I, III and IV of the electron 

transport chain (4) are oxidised, a combination of circumstances that result in inhibition of glycolysis, 

phosphorylation of G6PD and increased metabolism through the PPP. Moreover, oxidation of Cys 

residues in PTEN (5) causes activation of PKB/Akt, resulting in increased cell survival. 

 

Figure 2. NRF2 provides and inducible floodgate defence against oxidative stress. Under non-

stressed basal conditions (A), cellular redox homeostasis is maintained by constitutive expression 

of a battery of antioxidant genes. However, when exposed to acute oxidative stress (B), cells adapt 

to the increase in ROS levels by inducing genes encoding detoxification, GSH- and TXN-dependent 

antioxidants and NADPH-generating enzymes that are regulated by NRF2. Should the capacity of 

the antioxidant systems that are induced by NRF2 become saturated and therefore insufficient to 

counter additional oxidative stress (C), or prolonged oxidative stress causes activation of KLF9 and 

downregulation of NRF2, the excess levels of ROS that are not countered by the NRF2-directed 

defences then trigger additional redox switches that activate other members of the antioxidant 
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transcription factor network. When NRF2-orchestrated defences become saturated, activation of 

other members of the antioxidant transcription factor network may occur simultaneously, or they may 

be activated in a stratified manner with each transcription factor being activated at a distinct ROS 

threshold, which results in various cellular responses including metabolic reprogramming, damage 

repair, cell cycle arrest, senescence and apoptosis. 

 

Figure 3. Redox regulation of PTP- and PTEN-mediated inhibition of cell proliferation and survival. 

Protein tyrosine phosphatases PTP1B, PTPN2 and PTPN11 and the lipid phosphatase PTEN 

suppress MAPK and PKB/Akt activity, as well as NF-κB signaling (bottom left). These phosphatases 

each possess an active-site Cys residue in a thiolate anion (S–) state that is susceptible to oxidation: 

as depicted across the centre of the cartoon, the thiolate form of the active-site Cys can be oxidised 

to sulfenate (SOH), sulfinate (SO2H) or sulfonate (SO3H) states depending on the levels of H2O2 and 

duration of exposure to H2O2 (see Box 6). Alternatively, as shown at the top of the cartoon, the 

active-site Cys may form mixed disulfides by reacting with GSH (S-glutathionylated protein-SSG), 

that can be catalysed by GST P1-1, or react with another thiol internally or in another protein to form 

a disulfide bridge (-S−S-). These oxidative modifications of the phosphatases result in their 

inactivation and therefore an increase in MAPK and PKB/Akt activity and NF-κB signaling. However, 

oxidative inactivation to sulfenate or sulfinate states can be reversed by the TXN1 or SRXN1 

antioxidant systems (shown in green boxes), thereby allowing rescue of phosphatase activity and 

suppression of MAPK, PKB/Akt and NF-κB activities. Similarly, active-site Cys that have been S-

glutathionylated or have formed a disulfide bridge can be reversed by the GRX/GSH antioxidant 

system (green box), or de-glutathionylated by GST O1-1, thereby allowing recovery of phosphatase 

activity. Oxidation of the active site Cys to a sulfonate state is irreversible (right), and the protein has 

to be eliminated. 

 

Figure 4. An ambiguous role for oxidative stress in tumorigenesis. The cartoon depicts development 

of malignant disease from initiation through promotion and progression, until it acquires a highly 

malignant, invasive and metastatic phenotype. The contributions that excess levels of O2
–, H2O2, 

HO and ONOO– may make to the different stages of the disease are indicated in panel at the 

bottom.  

 
Figure 5. Influence of oxidative stress on cell fate during early stages of tumorigenesis. The cartoons 

depict how levels of ROS stimulate proliferation or apoptosis in preneoplastic cells during initiation 

of tumorigenesis, and how ROS support EMT during progression of tumorigenesis by altering TGF-

β signaling and by activation of antioxidant transcription factors that control expression of EMT-TFs. 
During the earliest stages of tumorigenesis (A), activation of oncogenes, coupled with higher 

metabolic demands, results in an increase in intracellular ROS levels in early neoplastic 
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lesions/adenomas. In order to benefit from the proliferative advantages associated with the increase 

in ROS, without succumbing to apoptosis, cells harbouring activated oncogenes augment their 

antioxidant capacity by increasing transactivation of genes encoding GSH- and TXN-dependent 

enzymes along with antioxidant/detoxification enzymes (1). Often this readjustment of redox entails 

loss or blunting of repression of NRF2 by KEAP1 and induction of NRF2-target genes. In addition, 

HIF-1α increases expression of key metabolic proteins such as GLUT1, HK2 and MCT4. Also, NF-

κB and TP53 probably contribute to this adaptive process, though in lesions harbouring mutant TP53 

the latter is unlikely. Treatment of animals with BSO, which inhibits synthesis of GSH, prior to 

initiation of carcinogenesis will stimulate apoptosis of premalignant cells (2). However, once 

carcinogenesis has been initiated, stimulation of apoptosis in malignant cells requires inhibition of 

both the GSH- (by BSO) and the TXN- (by Sulfasalazine or Auranofin) based antioxidant systems. 

During the progression stage of tumorigenesis (B), EMT is triggered by a variety of environmental 

factors including those that alter intracellular redox. In this regard, TGF-β signaling (1), growth factor 

signaling (2) and tumor-associated macrophages (TAMs) in the microenvironment (3) will produce 

ROS. Binding of TGF-β to its cognate receptor causes phosphorylation of SMAD2/3 (4), induction of 

NOX4 gene expression (5), which results in production of H2O2 at the endoplasmic reticulum (6). 

NOX4-generated ROS within the tumor cell is augmented by growth factor signaling causing 

phosphorylation and activation of NOX1 and production of O2
– at the plasma membrane (7), with 

elevated ROS increasing processing of latent TGF-β (8). The increases in ROS from TGF-β and 

growth factor signaling, along with those generated by TAMs, activate TP53, which combines with 

SMAD proteins to induce transcription of genes encoding the EMT-TFs SNAIL and TWIST (9). 

Similarly, increased ROS levels activate AP-1 (10) and HIF-1α (11) and induce SNAIL and TWIST, 

whereas the activation by ROS of NF-κB (12) leads to induction of genes encoding SNAIL, TWIST, 

SLUG, ZEB1 and ZEB2. Together, SNAIL, TWIST, SLUG, ZEB1 and ZEB2 positively control 

expression of mesenchymal-associated genes and negatively control expression of epithelial-

associated genes. ROS also activate HSF1 (13), whereas its downregulation decreases TGF-β-

mediated expression of SNAIL and SLUG and inhibits EMT, although the precise mechanism(s) is 

not understood. 

 
 
Figure 6. Reductive glutamine metabolism and serine-driven folate metabolism suppresses 

mitochondrial ROS accumulation to support anchorage-independent growth and/or metastatic 

disease. (A) The increase in mitochondrial ROS that occurs when tumor cells are grown as 

spheroids can be mitigated by the concerted actions of IDH1 (1) and IDH2 (2), located in the 

cytoplasm and mitochondrion, respectively. Specifically, within the cytoplasm, IDH1 catalyses the 

reductive carboxylation of α-ketoglutarate (α-KG), obtained from glutamine (by the sequential 

actions of GLS1 and GDH, see top right of cartoon), utilising NADPH provided by the pentose 
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phosphate pathway (PPP, see top left and center of cartoon), to provide a supply of isocitrate and 

citrate. In turn, citrate in the cytoplasm is transferred to the mitochondrion via the citrate transporter 

protein (CPT, SLC25A1), before it is utilized by IDH2 to produce α-KG and NADPH. The latter is 

required to reduce GSSG and maintain high GSH levels, which ensures mitochondrial ROS levels 

are restrained and anoikis averted. Thus, IDH1 and IDH2 activities in the different sub-cellular 

compartments enable NADPH generated by the PPP, along with high glutamate/glutamine levels, 

to drive reductive carboxylation of α-KG in the cytoplasm, and so transfer reducing equivalents 

from the cytoplasm to the mitochondrion. (B) The 10-formyl-tetrahydrofolate (THF) pathway 

represents a major source of NADPH for a variety of cell lines grown under in vitro cell culture 

conditions.  For melanoma tumor cells to survive the relatively high O2 levels in the bloodstream 

and then colonise the liver, they increase production of NADPH by augmenting ALDH1L2 protein 

levels and maintaining levels of MTHFD1; ALDH1L2 (1) and MTHFD1 (2) are located in the 

mitochondrion and cytoplasm, respectively. The cartoon depicts how high de novo synthesis of 

serine, derived from glucose and 3-phosphoglycerate (top left-hand side), followed by transport 

into the mitochondrion, allows donation of a methyl group to THF, yielding 5,10-methylene-THF 

through a serine hydroxymethyl transferase (SHMT) 2-catalysed reaction. In turn, 5,10-methylene-

THF within the mitochondrion is converted to 10-formyl-THF by MTHFD2, which can in turn be 

utilised by ALDH1L2 to form NADPH (bottom right-hand side) that maintains GSH levels and 

prevents excess ROS from accumulating. Alternatively, 10-formyl-THF can be used by MTHFD1L 

to generate formate, which when transported out of the mitochondrion can be used in reversible 

MTHFD1-catalysed reactions to generate 5,10-methylene-THF. 

 

 

 

 

 

 

 

 

Table 1. Redox homeostasis-associated genes regulated by members of the antioxidant 

transcription factor network. 
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Table 2. Overview of drugs that target redox platforms. 

Drug Mechanism of action Notes Reference 

Amifostine Aminothiol used to protect 
normal tissues against 
radiation toxicities. 

FDA approved in esophageal cancer. (Shen et al., 2001) 

MESNA Thiol used with alkylating 
agents to protect bladder. 

As an adjuvant, reduces incidence of 
hemorrhagic cystitis. 

(Verschraagen et 
al., 2003) 

NOV-002 Mimetic of GSSG. Designed 
to interfere with cancer 
cell GSH homeostasis 
while protecting bone 
marrow. 

Negative results in Phase 3 clinical 
trials. 

(Townsend et al., 
2008) 

Buthionine 
sulfoximine 

Inhibitor of de novo GSH 
biosynthesis. 

Phase 1/2 clinical trials showed dose-
limiting liver toxicity. 

(O'Dwyer et al., 
1992) 

Sulforaphane Organosulfur isothiocyanate 
with reported 
chemoprevention 
properties. 

Tested in a variety of preclinincal and 
clinical settings. 

(Hail et al., 2008) 

Arsenic trioxide Cross-links vicinal thiols in 
sensitive proteins.  

FDA approved promyelocytic leukemia. (Wang and Chen, 
2008) 

Auranofin Non-specific binding, but 
inhibits thioredoxin 
reductase. 

Plausible use in ovarian cancer. (Fan et al., 
2014a) 

PX-12 Irreversible inhibitor of 
thioredoxin-1. 

Following drug administration, patients 
experienced strong, dose-limiting 
sulfurous odors. 

(Baker et al., 
2006) 

Telcyta Alkylating prodrug activated 
by GSTP. 

Negative results Phase 3 clinical trials. (Tew, 2005) 

Telintra Small molecule inhibitor of 
GSTP. 

Clinical benefit in myelodysplastic 
syndrome patients. 

(Ruscoe et al., 
2001) 

Ethacrynic acid Michael addition chemistry 
reacts with thiols.  

FDA approved as a diuretic; used in 
combination with alkylating agents; 
dose-limiting fluid imbalance in cancer 
patients. 

(O'Dwyer et al., 
1991) 

PRIMA-1 or 
APR-246 

Michael addition chemistry 
with apparent specificity 
towards p53 

Restores wild type functions of p53. 
Testing in progress. 

(Ogiwara et al., 
2019) 

Erastin Small molecule modulator of 
VDAC and inhibitor of 
Gpx4 

Analogue development leads to Phase 
1 study of PRLX 93936. 

(Yang et al., 
2014) 

Ascorbate High doses cause high H2O2 
& deplete GSH & NADPH 

Numerous Phase I/II trials but as yet, 
no consensus on efficacy.  

(Chen et al., 
2005) 

CB-839 Inhibits glutaminase 1 
(GLS1), limits glutamine, 
reduces glutamate & 
cysteine 

Evidence of cancer specificity based 
on salvage pathways. Ongoing Phase 
I/II trials in combinations. 

(Romero et al., 
2017) 

Ivosidenib (AG-
120) 

Inhibits mutant IDH1 variants 
with concomitant 
depletion of NADPH and 
GSH pools 

Numerous Phase I/II trials. Phase III 
with azacytidine in AML. 

 (Popovici-Muller et al., 

2018) 
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