151 research outputs found

    Growing sweet potatoes [Ipomoea batatas (L.) Lam.)] for their greens and the impact on storage roots

    Get PDF
    Sweet potato greens are an underused but highly nutritious vegetable that grows well in urban environments and could help alleviate food insecurity and related health problems. Therefore, trials were conducted in field rows and a green roof with seven varieties of sweet potatoes to determine whether 1) they differed in their production of greens and 2) harvesting greens influenced yield or nutrients of storage roots. There was no difference in the mass of sweet potatoes greens harvested among the varieties in either production system. Harvesting greens severely reduced the harvested mass of storage roots, although it increased the content of eight minerals in storage roots, including boron, calcium, copper, iron, phosphorous, potassium, sulfur, and zinc. Urban farmers may have to decide whether harvesting greens or storage roots are their primary objective if harvesting the former limits the latter. Future research should explore the timing of harvesting greens and the amount taken to see if different methods allow for a high yield of storage roots that are high in nutrients

    Postoperative Intensive Care Management of Aortic Repair

    Get PDF
    Vascular surgery patients have multiple comorbidities and are at high risk for perioperative complications. Aortic repair surgery has greatly evolved in recent years, with an increasing predominance of endovascular techniques (EVAR). The incidence of cardiac complications is significantly reduced with endovascular repair, but high-risk patients require postoperative ST-segment monitoring. Open aortic repair may portend a prohibitive risk of respiratory complications that could be a contraindication for surgery. This risk is greatly reduced in the case of an endovascular approach, and general anesthesia should be avoided whenever possible in the case of endovascular repair. Preoperative renal function and postoperative kidney injury are powerful determinants of short- and long-term outcome, so that preoperative risk stratification and secondary prevention are critical tasks. Intraoperative renal protection with selective renal and distal aortic perfusion is essential during open repair. EVAR has lower rates of postoperative renal failure compared to open repair, with approximately half the risk for acute kidney injury (AKI) and one-third of the risk of hemodialysis requirement. Spinal cord ischemia used to be the most distinctive and feared complication of aortic repair. The risk has significantly decreased since the beginning of aortic surgery, with advances in surgical technique and spinal protection protocols, and is lower with endovascular repair. Endovascular repair avoids extensive aortic dissection and aortic cross-clamping and is generally associated with reduced blood loss and less coagulopathy. The intensive care physician must be aware that aortic repair surgery has an impact on every organ system, and the importance of early recognition of organ failure cannot be overemphasized

    Antigen-specific clonal expansion and cytolytic effector function of CD8+ T lymphocytes depend on the transcription factor Bcl11b

    Get PDF
    CD8+ T lymphocytes mediate the immune response to viruses, intracellular bacteria, protozoan parasites, and tumors. We provide evidence that the transcription factor Bcl11b/Ctip2 controls hallmark features of CD8+ T cell immunity, specifically antigen (Ag)-dependent clonal expansion and cytolytic activity. The reduced clonal expansion in the absence of Bcl11b was caused by altered proliferation during the expansion phase, with survival remaining unaffected. Two genes with critical roles in TCR signaling were deregulated in Bcl11b-deficient CD8+ T cells, CD8 coreceptor and Plcγ1, both of which may contribute to the impaired responsiveness. Bcl11b was found to bind the E8I, E8IV, and E8V, but not E8II or E8III, enhancers. Thus, Bcl11b is one of the transcription factors implicated in the maintenance of optimal CD8 coreceptor expression in peripheral CD8+ T cells through association with specific enhancers. Short-lived Klrg1hiCD127lo effector CD8+ T cells were formed during the course of infection in the absence of Bcl11b, albeit in smaller numbers, and their Ag-specific cytolytic activity on a per-cell basis was altered, which was associated with reduced granzyme B and perforin

    Genome-Wide Identification of Bcl11b Gene Targets Reveals Role in Brain-Derived Neurotrophic Factor Signaling

    Get PDF
    B-cell leukemia/lymphoma 11B (Bcl11b) is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells

    A novel Netrin-1-sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching

    Get PDF
    Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.American Heart Association (Fellowship 0615692T)National Institutes of Health (U.S.) (Grant GM68678

    A Mammalian Conserved Element Derived from SINE Displays Enhancer Properties Recapitulating Satb2 Expression in Early-Born Callosal Projection Neurons

    Get PDF
    Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered “junk DNA”. However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1−/NPY+) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure

    Increased Expression of Bcl11b Leads to Chemoresistance Accompanied by G1 Accumulation

    Get PDF
    BACKGROUND: The expression of BCL11B was reported in T-cells, neurons and keratinocytes. Aberrations of BCL11B locus leading to abnormal gene transcription were identified in human hematological disorders and corresponding animal models. Recently, the elevated levels of Bcl11b protein have been described in a subset of squameous cell carcinoma cases. Despite the rapidly accumulating knowledge concerning Bcl11b biology, the contribution of this protein to normal or transformed cell homeostasis remains open. METHODOLOGY/PRINCIPAL FINDINGS: Here, by employing an overexpression strategy we revealed formerly unidentified features of Bcl11b. Two different T-cell lines were forced to express BCL11B at levels similar to those observed in primary T-cell leukemias. This resulted in markedly increased resistance to radiomimetic drugs while no influence on death-receptor apoptotic pathway was observed. Apoptosis resistance triggered by BCL11B overexpression was accompanied by a cell cycle delay caused by accumulation of cells at G1. This cell cycle restriction was associated with upregulation of CDKN1C (p57) and CDKN2C (p18) cyclin dependent kinase inhibitors. Moreover, p27 and p130 proteins accumulated and the SKP2 gene encoding a protein of the ubiquitin-binding complex responsible for their degradation was repressed. Furthermore, the expression of the MYCN oncogene was silenced which resulted in significant depletion of the protein in cells expressing high BCL11B levels. Both cell cycle restriction and resistance to DNA-damage-induced apoptosis coincided and required the histone deacetylase binding N-terminal domain of Bcl11b. The sensitivity to genotoxic stress could be restored by the histone deacetylase inhibitor trichostatine A. CONCLUSIONS: The data presented here suggest a potential role of BCL11B in tumor survival and encourage developing Bcl11b-inhibitory approaches as a potential tool to specifically target chemoresistant tumor cells

    Pαx6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1

    Get PDF
    During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity
    corecore