117 research outputs found

    Lyman Alpha Emitters in the Hierarchically Clustering Galaxy Formation

    Full text link
    We present a new theoretical model for the luminosity functions (LFs) of Lyman alpha (Lya) emitting galaxies in the framework of hierarchical galaxy formation. We extend a semi-analytic model of galaxy formation that reproduces a number of observations for local and high-z galaxies, without changing the original model parameters but introducing a physically-motivated modelling to describe the escape fraction of Lya photons from host galaxies (f_esc). Though a previous study using a hierarchical clustering model simply assumed a constant and universal value of f_esc, we incorporate two new effects on f_esc: extinction by interstellar dust and galaxy-scale outflow induced as a star formation feedback. It is found that the new model nicely reproduces all the observed Lya LFs of the Lya emitters (LAEs) at different redshifts in z ~ 3-6. Especially, the rather surprisingly small evolution of the observed LAE Lya LFs compared with the dark halo mass function is naturally reproduced. Our model predicts that galaxies with strong outflows and f_esc ~ 1 are dominant in the observed LFs. This is also consistent with available observations, while the simple universal f_esc model requires f_esc << 1 not to overproduce the brightest LAEs. On the other hand, we found that our model significantly overpredicts LAEs at z > 6, and absorption of Lya photons by neutral hydrogen in intergalactic medium (IGM) is a reasonable interpretation for the discrepancy. This indicates that the IGM neutral fraction x_HI rapidly evolves from x_HI << 1 at z < 6 to a value of order unity at z ~ 6-7, which is broadly consistent with other observational constraints on the reionization history.Comment: 14 pages, 7 figures, 1 table; accepted to ApJ; the html abstract is replaced to match the accepted version, the .ps and .pdf files are strictly identical between the 2nd and the 3rd version

    Gradients of absorption-line strengths in elliptical galaxies

    Get PDF
    © 1999. The American Astronomical Society. All rights reserved. This is the final published version of the work, which was originally published at https://doi.org/10.1086/308092We have restudied line-strength gradients of 80 elliptical galaxies. Typical metallicity gradients of elliptical galaxies are Delta[Fe/H]/Delta log r similar or equal to -0.3, which is flatter than the gradients predicted by monolithic collapse simulations. The metallicity gradients do not correlate with any physical properties of galaxies, including central and mean metallicities, central velocity dispersions sigma(0), absolute B magnitudes M-B, absolute effective radii R-e, and dynamical masses of galaxies. By using the metallicity gradients, we have calculated mean stellar metallicities for individual ellipticals. Typical mean stellar metallicities are [[Fe/H]] similar or equal to -0.3 and range from [[Fe/H]] similar or equal to -0.8 to +0.3, which is contrary to what Gonzalez & Gorgas claimed; the mean metallicities of ellipticals are not universal. The mean metallicities correlate well with sigma(0) and dynamical masses, though relations for M-B and R-e include significant scatters. We find fundamental planes defined by surface brightnesses SBe, [[Fe/H]], and R-e (or M-B), the scatters of which are much smaller than those of the [[Fe/H]]-R-e (or [[Fe/H]]-M-B) relations. The [[Fe/H]]-log sigma(0) relation is nearly parallel to the [Fe/H](0)-log sigma(0) relation but systematically lower by 0.3 dex; thus the mean metallicities are about one-half of the central values. The metallicity-mass relation or, equivalently, the color-magnitude relation of ellipticals holds not only for the central parts of galaxies but also for entire galaxies. Assuming that Mg-2 and Fe-1 give [Mg/H] and [Fe/H], respectively, we find [[Mg/Fe]] similar or equal to +0.2 in most of elliptical galaxies. [[Mg/Fe]] shows no correlation with galaxy mass tracers such as sigma(0), in contrast to what was claimed for the central [Mg/Fe]. This can be most naturally explained if the star formation had stopped in elliptical galaxies before the bulk of Type Ia supernovae began to occur. Elliptical galaxies can have significantly different metallicity gradients and [[Fe/H]], even if they have the same galaxy mass. This may result from galaxy mergers, but no evidence is found from presently available data to support the same origin for metallicity gradients, the scatters around the metallicity-mass relation, and dynamical disturbances. This may suggest that the scatters have their origin at the formation epoch of galaxies.Peer reviewe

    The Subaru COSMOS 20: Subaru Optical Imaging of the HST COSMOS Field with 20 Filters

    Full text link
    We present both the observations and the data reduction procedures of the Subaru COSMOS 20 project that is an optical imaging survey of the HST COSMOS field, carried out by using Suprime-Cam on the Subaru Telescope with the following 20 optical filters: 6 broad-band (B, g', V, r', i', and z'), 2 narrow-band (NB711 and NB816), and 12 intermediate-band filters (IA427, IA464, IA484, IA505, IA527, IA574, IA624, IA679, IA709, IA738, IA767, and IA827). A part of this project is described in Taniguchi et al. (2007) and Capak et al. (2007) for the six broad-band and one narrow-band (NB816) filter data. In this paper, we present details of the observations and data reduction for remaining 13 filters (the 12 IA filters and NB711). In particular, we describe the accuracy of both photometry and astrometry in all the filter bands. We also present optical properties of the Suprime-Cam IA filter system in Appendix.Comment: 15 pages, 8 figures, 7 tables; accepted for publication in PASJ on October 2, 201

    A Shock-Induced Pair of Superbubbles in the High-Redshift Powerful Radio Galaxy MRC 0406-244

    Get PDF
    We present new optical spectroscopy of the high-redshift powerful radio galaxy MRC 0406−-244 at redshift of 2.429. We find that the two extensions toward NW and SE probed in the rest-frame ultraviolet image are heated mainly by the nonthermal continuum of the active galactic nucleus. However, each extension shows a shell-like morphology, suggesting that they are a pair of superbubbles induced by the superwind activity rather than by the interaction between the radio jet and the ambient gas clouds. If this is the case, the intense starburst responsible for the formation of superbubbles could occur ∌1×109\sim 1 \times 10^9 yr ago. On the other hand, the age of the radio jets may be of the order of ∌106\sim 10^6 yr, being much shorter than the starburst age. Therefore, the two events, i.e., the starburst and the radio-jet activities, are independent phenomena. However, their directions of the expanding motions could be governed by the rotational motion of the gaseous component in the host galaxy. This idea appears to explain the alignment effect of MRC 0406−-244.Comment: 4 pages (emulateapj.sty), Fig. 1 (jpeg) + Fig.2 (eps). Accepted for publications in ApJ (Letters

    Formation and Evolution of Early-Type Galaxies: Spectro-Photometry from Cosmo-Chemo-Dynamical Simulations

    Full text link
    One of the major challenges in modern astrophysics is to understand the origin and the evolution of galaxies, the bright, massive early type galaxies (ETGs) in particular. Therefore, these galaxies are likely to be good probes of galaxy evolution, star formation and, metal enrichment in the early Universe. In this context it is very important to set up a diagnostic tool able to combine results from chemo-dynamical N-Body-TSPH (NB-TSPH) simulations of ETGs with those of spectro-photometric population synthesis and evolution so that all key properties of galaxies can be investigated. The main goal of this paper is to provide a preliminary validation of the software package before applying it to the analysis of observational data. The galaxy models in use where calculated by the Padova group in two different cosmological scenarios: the SCDM, and the Lambda CDM. For these models, we recover their spectro-photometric evolution through the entire history of the Universe. We computed magnitudes and colors and their evolution with the redshift along with the evolutionary and cosmological corrections for the model galaxies at our disposal, and compared them with data for ETGs taken from the COSMOS and the GOODS databases. Starting from the dynamical simulations and photometric models at our disposal, we created synthetic images from which we derived the structural and morphological parameters. The theoretical results are compared with observational data of ETGs selected form the SDSS database. The simulated colors for the different cosmological scenarios follow the general trend shown by galaxies of the COSMOS and GOODS. Within the redshift range considered, all the simulated colors reproduce the observational data quite well.Comment: 28 pages, 28 figures, accepted for pubblication by A&

    Stellar population and dust extinction in an ultraluminous infrared galaxy at z=1.135

    Get PDF
    We present the detailed optical to far-infrared observations of SST J1604+4304, an ULIRG at z = 1.135. Analyzing the stellar absorption lines, namely, the CaII H & K and Balmer H lines in the optical spectrum, we derive the upper limits of an age for the stellar population. Given this constraint, the minimum {chi}^2 method is used to fit the stellar population models to the observed SED from 0.44 to 5.8um. We find the following properties. The stellar population has an age 40 - 200 Myr with a metallicity 2.5 Z_{sun}. The starlight is reddened by E(B-V) = 0.8. The reddening is caused by the foreground dust screen, indicating that dust is depleted in the starburst site and the starburst site is surrounded by a dust shell. The infrared (8-1000um) luminosity is L_{ir} = 1.78 +/- 0.63 * 10^{12} L_{sun}. This is two times greater than that expected from the observed starlight, suggesting either that 1/2 of the starburst site is completely obscured at UV-optical wavelengths, or that 1/2 of L_{ir} comes from AGN emission. The inferred dust mass is 2.0 +/- 1.0 * 10^8 M_{sun}. This is sufficient to form a shell surrounding the galaxy with an optical depth E(B-V) = 0.8. From our best stellar population model - an instantaneous starburst with an age 40 Myr, we infer the rate of 19 supernovae(SNe) per year. Simply analytical models imply that 2.5 Z_{sun} in stars was reached when the gas mass reduced to 30% of the galaxy mass. The gas metallcity is 4.8 Z_{sun} at this point. The gas-to-dust mass ratio is then 120 +/- 73. The inferred dust production rate is 0.24 +/- 0.12 M_{sun} per SN. If 1/2 of L_{ir} comes from AGN emission, the rate is 0.48 +/- 0.24 M_{sun} per SN. We discuss the evolutionary link of SST J1604+4304 to other galaxy populations in terms of the stellar masses and the galactic winds.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    Cosmic evolution of the CIV in high-resolution hydrodynamic simulations

    Get PDF
    We investigate the properties of triply ionized Carbon (CIV) in the Intergalactic Medium using a set of high-resolution and large box-size cosmological hydrodynamic simulations of a Λ\LambdaCDM model. We rely on a modification of the GADGET-2 code that self-consistently follows the metal enrichment mechanism by means of a detailed chemical evolution model. We focus on several numerical implementations of galactic feedback: galactic winds in the energy driven and momentum driven prescriptions and Active Galactic Nuclei (AGN) powered by gas accretion onto massive black holes. We extract mock IGM transmission spectra in neutral hydrogen (HI) and CIV and perform Voigt profile fitting. The results are then compared with high-resolution quasar (QSO) spectra obtained with the UVES spectrograph at the VLT and the HIRES spectrograph at Keck. We find that feedback has little impact on statistics related to the neutral hydrogen, while CIV is more affected by galactic winds and/or AGN feedback. When the same analysis is performed over observed and simulated CIV lines, we find reasonables good agreement between data and simulations over the column density range NCIV=1012.5−15N_{\rm CIV}=10^{12.5-15} cm−2^{-2}. Also the CIV line-widths distribution appears to be in agreement with the observed values, while the HI Doppler parameters, bHIb_{\rm HI}, are in general too large showing that the diffuse cosmic web is heated more than what is inferred by observations. The simulation without feedback fails in reproducing the CIV systems at high column densities at all redshift, while the AGN feedback case agrees with observations only at z<3z<3, when this form of feedback is particularly effective. We also present scatter plots in the b−Nb-N and in the NCIV−NHIN_{\rm CIV}-N_{\rm HI} planes, showing that there is rough agreement between observations and simulations only when feedback is taken into account.Comment: 22 pages, 20 figures, minor revisions, accepted for publication in MNRA

    Chemical enrichment of galaxy clusters from hydrodynamical simulations

    Full text link
    We present cosmological hydrodynamical simulations of galaxy clusters aimed at studying the process of metal enrichment of the intra--cluster medium (ICM). These simulations have been performed by implementing a detailed model of chemical evolution in the Tree-SPH \gd code. This model allows us to follow the metal release from SNII, SNIa and AGB stars, by properly accounting for the lifetimes of stars of different mass, as well as to change the stellar initial mass function (IMF), the lifetime function and the stellar yields. As such, our implementation of chemical evolution represents a powerful instrument to follow the cosmic history of metal production. The simulations presented here have been performed with the twofold aim of checking numerical effects, as well as the impact of changing the model of chemical evolution and the efficiency of stellar feedback.Comment: to appear on MNRA
    • 

    corecore