24 research outputs found

    Climate warming predispose sessile oak forests to drought-induced tree mortality regardless of management legacies

    Get PDF
    Climate warming-related drought could become a major driver of large-scale forest dieback. However, little is known about how past management legacies modulate the climate-growth responses during recent dieback episodes in central European oak forests. Here, we examine the role played by past management –unmanaged old-growth vs. managed forests– in recent tree mortality events occurring in Quercus petraea (Matt.) Liebl. stands across large areas of western Romania. We analyze how stand structure (tree size, competition) and climatic factors (drought, temperature and precipitation) drive tree radial growth patterns in neighboring standing dead and living trees. We analyzed basal area increments (BAI) trends, past management legacies and climate- and drought-growth relationships during the 20th century to distinguish the roles and interactions on recent warming-induced dieback. We observed that temperature rises and changes in atmospheric water demand during growing season let to increasing drought stress during the late 20th century affecting both managed and unmanaged forests. Dead trees from old-growth and managed forests showed lower growth than living trees after dieback onset. In both forests, dead and living trees displayed divergent growth patterns after dry 1980s, indicating that dieback was triggered by severe extreme conditions. Dead trees from managed stands experienced significant stronger growth reductions after 1980s though they experienced less tree-to-tree competition than dead trees in old-growth forest. High stand density negatively drove growth and enhanced climate sensitivity in old-growth stands. Competition acted synergistically with climate warming and drought causing tree mortality regardless of the management legacies in of Q. petraea forests. Our retrospective assessment of growth rates in relation with climate and structure changes offers valuable information for further forest conservation and management decisions of Q. petraea forests. These findings highlight the importance of past uses legacies driving recent forest dieback in temperate oak forests, making them more vulnerable under forecasted climate-warming related droughts in central Europe.Nemoral Forests under Climate Extremes (NEMKLIM Project, grant number 3517861300), German Federal Agency for Nature Conservation (Bundesamt fĂŒr Naturschutz,BfN), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Germany, project PN 19070506, Romanian National Authority from Scientific Research and Innovation, Romanian Ministry of Education and Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2020- 2696, within PNCDI III. projects VUL-BOS project (UPO-1263216 and PinCaR (UHU-1266324), FEDER Funds, Andalusia Regional Government, ConsejerĂ­a de EconomĂ­a, Conocimiento, Empresas y Universidad 2014-2020), project LESENS (RTI2018-096884-B-C33), Spanish Ministry of Science, Innovation and Universities.This work was supported by NEMKLIM project: Nemoral Forests under Climate Extremes (NEMKLIM Project, grant number 3517861300), financed by the German Federal Agency for Nature Conservation (Bundesamt fĂŒr Naturschutz,BfN) and the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Germany and by project PN 19070506 financed by Romanian National Authority from Scientific Research and Innovation. I.C. Petritan was supported by a grant of the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2020- 2696, within PNCDI III. R. S ÂŽanchez-Salguero was supported by VUL-BOS project (UPO-1263216, FEDER Funds, Andalusia Regional Government, ConsejerĂ­a de EconomĂ­a, Conocimiento, Empresas y Universidad 2014-2020) and LESENS (RTI2018-096884-B-C33) project from the Spanish Ministry of Science, Innovation and Universities. A. Hevia was supported by PinCaR project (UHU-1266324, FEDER Funds, Andalusia Regional Government, ConsejerĂ­a de EconomĂ­a, Conocimiento, Empresas y Universidad 2014-2020). We are also grateful to Lucian Toiu, Nicu Tudose, George Sarbu and Gheorghe Stefan for help in collecting field data. We appreciate the permission and logistic support given by staff of the Barzava and Codrii Beiusului si Sfanta Maria Forest Districts, we are grateful especially to eng. Gheorghe Marc and eng. Jeno Ferko. The authors declare no conflicts of interest

    The Resistance of European Beech (Fagus sylvatica) From the Eastern Natural Limit of Species to Climate Change

    Get PDF
    In this study, different approaches were used to investigate the vulnerability of beech forests, located at the eastern limit of their natural range, to climate change. To accomplish this, six 2500 m2 plots were sampled in four European beech forest genetic resources, located in Romania at different altitudinal levels, varying from 230 to 580 m in the BacĂ„Æ’u hills and between 650 and 1300 m in the Curvature Carpathian (BraÅƾov region). The analysis of trees phenotypic traits, their radial growth, and the regeneration, did not indicate a vulnerability of the sampled stands to the fluctuations of the environmental factors from the 1950-2014 period. The growth indices of all three populations of BacĂ„Æ’u hills are negatively correlated with both June air temperature of current year and September of the previous year. The precipitation amount of September previous year positively influenced the growth indices. The radial growth of plots in BraÅƾov region is slightly linked to the climate. The temperature during the growing season represents a limiting factor for stands that are located outside of the optimal altitudinal species distribution (600-1200 m, in Romania), especially at low altitudes. Our results indicated that a rise of the temperature accompanied by a possible reduction of the precipitations (as is predicted for the coming years) could increase the sensibility of beech forests at lower altitude

    Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth

    Get PDF
    Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter- annual growth variability and a decrease in growth synchrony in the last similar to 20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.Peer reviewe

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth.

    Get PDF
    The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A comparative analysis of foliar chemical composition and leaf construction costs of beech (

    No full text
    ‱ Construction cost (g glucose g−1), chemical composition and morphology of leaves of beech (Fagus sylvatica L.) and two co-occurring valuable broadleaved species (sycamore maple – Acer pseudoplatanus L. – and ash – Fraxinus excelsior L.) were investigated along a horizontal light gradient (3–60% of above canopy radiation) and from top to bottom within the crowns in a fairly even-aged mixed-species thicket established by natural regeneration beneath a patchy shelterwood canopy. ‱ Construction cost and carbon concentration increased with irradiance in ash and sycamore maple and were independent of irradiance in beech. Leaf traits expressed on an area basis, like construction cost, nitrogen content and leaf mass (LMA) increased significantly with irradiance in all three species and decreased from top to bottom within crowns. ‱ The shade tolerant beech invested more glucose to produce a unit foliar biomass, but less to build a unit foliar area due to lower LMA. Thereby beech was able to display a greater total leaf area, what at least in parts counterbalanced the lower values of Na as compared to ash and sycamore maple

    Forest Functioning under Climate Warming and Future Perspectives on Forest Disturbances

    No full text
    The Special Issue “Impact of climate warming and disturbances on forest ecosystems” underscores the critical importance of understanding how forests respond to these environmental challenges and the legacy of past management practices. Forest ecosystems are facing significant challenges due to ongoing climate change, characterized by rising temperatures and increased frequency of extreme events. The rapid pace of climate change is altering disturbance patterns and the adaptability of forests, which have a direct impact on ecosystem services that contribute to human well-being. This Special Issue features 11 research papers from nine countries. Some key outputs from these research papers include evidence on how climate change is already impacting forest ecosystems. For instance, the climatic envelope of many forest species has shifted due to global warming, making species more vulnerable, especially in lower elevations and at the edges of their distribution. Urgent adaptive measures in forest management are necessary to address this challenge. Climate change also affects vegetation phenology, tree growth, stand productivity, reproduction rates, and stand regeneration. Remote sensing data and ecological modeling techniques play a crucial role in monitoring and understanding these changes, especially in remote regions where field measurements are limited. The rising frequency and intensity of extreme events like droughts, windstorms, and forest fires require enhanced prediction and automatic monitoring. Leveraging machine learning tools and remote sensing data is imperative. This Special Issue provides insights into the intricate relationships among forests, climate change, and human interventions. We provide further research recommendations for the quantification and automated monitoring of forest fires and the management of forests to better withstand storms and increase their resilience to climate change.ISSN:1999-490

    Relation between Topography and Gap Characteristics in a Mixed Sessile Oak–Beech Old-Growth Forest

    No full text
    The interest to assess the relationship between forest gap characteristics and topography features has been growing in the last decades. However, such an approach has not been studied in undisturbed mixed sessile oak–beech old-growth forests. Therefore, the present study carried out in one of the best-preserved sessile oak–beech old-growth forests in Europe, aims to assess the influence of topographic features (slope, altitude and aspect) on (i) some characteristics of canopies and expanded gaps (surface, diameter and perimeter) and (ii) the proportion of beech and sessile oak as bordering trees, gap fillers and gap makers. Through a complete gap survey on an area of 32 ha, 321 gaps were identified and mapped. The largest gaps and also the highest gap frequency (140) was found in the slope class (15.1–20°), while the gap frequency increased with altitude, with 99 gaps being recorded at 601–650 m a.s.l. The size and perimeter of the canopy and expanded gaps, as well as the number of gap makers, were negatively related to the slope and altitude. The expanded gap to canopy gap size ratio decreased with the slope and was positively related to the altitude, while a significant negative decrease in gap filler density with altitude was encountered. The sessile oak participation ratio as bordering trees forming the gap increased not only with the altitude but also with the slope. The topography plays an important role in the formation of gaps as well as in the characteristics of the future stand. This study provides valuable insights into the relationship between canopy gap characteristics and topography, which is useful information for forest owners that pursue the design of forest management toward nature-based solutions
    corecore