29 research outputs found

    Culture of skeletal myoblasts from human donors aged over 40 years: dynamics of cell growth and expression of differentiation markers

    Get PDF
    BACKGROUND: Local myogenesis, neoangiogenesis and homing of progenitor cells from the bone marrow appear to contribute to repair of the infarcted myocardium. Implantation into heart tissues of autologous skeletal myoblasts has been associated with improved contractile function in animal models and in humans with acute myocardial ischemia. Since heart infarction is most prevalent in individuals of over 40 years of age, we tested whether culture methods available in our laboratory were adequate to obtain sufficient numbers of differentiated skeletal myoblasts from muscle biopsy specimens obtained from patients aged 41 to 91. METHODS AND RESULTS: No matter of donor age, differentiated skeletal muscle cells could be produced in vitro in amounts adequate for cellular therapy (≥300 millions). Using desmin as a cytoplasmic marker, about 50% cultured cells were differentiated along myogenic lineages and expressed proteins proper of skeletal muscle (myosin type I and II, actin, actinin, spectrin and dystrophin). Cytogenetic alterations were not detected in cultured muscle cells that had undergone at least 10 population doublings. Molecular methods employed for the screening of persistent viral infections evidenced that HCV failed to replicate in muscle cells cultured from one patient with chronic HCV infection. CONCLUSION: The proposed culture methods appear to hold promise for aged patients not only in the field of cardiovascular medicine, but also in the urologic and orthopedic fields

    Pseudomonas aeruginosa bloodstream infections: risk factors and treatment outcome related to expression of the PER-1 extended-spectrum beta-lactamase

    Get PDF
    BACKGROUND: Bloodstream infection (BSI) due to Pseudomonas aeruginosa (Pa) has relevant clinical impact especially in relation to drug resistance determinants. The PER-1 extended-spectrum beta-lactamase (ESBL) is a common enzyme conferring high-level resistance to anti-pseudomonal cephalosporins. Risk factors and treatment outcome of BSI episodes caused by PER-1-positive Pa (PER-1-Pa) strains were compared to those caused by ESBL-negative Pa isolates (ESBL-N-Pa). METHODS: Twenty-six BSI cases due to ceftazidime-resistant Pa strains have been investigated. MIC values of anti-pseudomonal drugs were determined by the Etest method (AB Biodisk, Solna, Sweden). The double-disk synergy test was used to detect ESBL production. PCR amplification and DNA sequencing were used to characterize ESBL types. Clinical records of BSI-patients were examined retrospectively. Demographic data, underlying diseases (McCabe-Jackson classification and Charlson weighted index), risk factors, antimicrobial therapy, and treatment outcome were evaluated in cases due to ESBL-positive and cases due to ESBL-N-Pa isolates. Unpaired Student's t-test, Mann-Whitney U-test, Fisher's exact test and the χ(2 )test were used for statistical analysis. RESULTS: Nine Pa isolates expressed the PER-1 ESBL; the remaining 17 isolates did not produce ESBLs. Severe sepsis (P = 0.03), bladder and intravascular catheters (both P = 0.01), immunosuppressive therapy (P = 0.04), and mechanical ventilation (P = 0.03) were significantly associated with BSI due to PER-1-Pa. Empirical treatment (P = 0.02) and treatment after ID/AST (P < 0.01) were rarely adequate in PER-1-Pa cases. With regard to treatment outcome, 77.8% BSI cases due to PER-1-Pa vs. 28.6% cases due to ESBL-N-Pa isolates failed to respond (P < 0.03). All cases due to PER-1-Pa that were treated with carbapenems (alone or in combination with amikacin) failed to respond. In contrast, 7/8 cases due to ESBL-N-Pa given carbapenems were responders. CONCLUSION: Therapeutic failure and increased hospital costs are associated with BSI episodes caused by PER-1-Pa strains. Thus, recognition and prompt reporting of ESBL-production appears a critical factor for the management of patients with serious P. aeruginosa infections

    Drug susceptibility testing of clinical isolates of streptococci and enterococci by the Phoenix automated microbiology system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance is an emerging problem among streptococcal and enterococcal species. Automated diagnostic systems for species identification and antimicrobial susceptibility testing (AST) have become recently available. We evaluated drug susceptibility of clinical isolates of streptococci and enterococci using the recent Phoenix system (BD, Sparks, MD). Diagnostic tools included the new SMIC/ID-2 panel for streptococci, and the PMIC/ID-14 for enterococci. Two-hundred and fifty isolates have been investigated: β-hemolytic streptococci (n = 65), <it>Streptococcus pneumoniae </it>(n = 50), viridans group streptococci (n = 32), <it>Enterococcus faecium </it>(n = 40), <it>Enterococcus faecalis </it>(n = 43), other catalase-negative cocci (n = 20). When needed, species ID was determined using molecular methods. Test bacterial strains were chosen among those carrying clinically-relevant resistance determinants (penicillin, macrolides, fluoroquinolones, glycopeptides). AST results of the Phoenix system were compared to minimal inhibitory concentration (MIC) values measured by the Etest method (AB Biodisk, Solna, Sweden).</p> <p>Results</p> <p>Streptococci: essential agreement (EA) and categorical agreement (CA) were 91.9% and 98.8%, respectively. Major (ME) and minor errors (mE) accounted for 0.1% and 1.1% of isolates, respectively. No very major errors (VME) were produced. Enterococci: EA was 97%, CA 96%. Small numbers of VME (0.9%), ME (1.4%) and mE (2.8%) were obtained. Overall, EA and CA rates for most drugs were above 90% for both genera. A few VME were found: a) teicoplanin and high-level streptomycin for <it>E. faecalis</it>, b) high-level gentamicin for <it>E. faecium</it>. The mean time to results (± SD) was 11.8 ± 0.9 h, with minor differences between streptococci and enterococci.</p> <p>Conclusion</p> <p>The Phoenix system emerged as an effective tool for quantitative AST. Panels based on dilution tests provided rapid and accurate MIC values with regard to clinically-relevant streptococcal and enterococcal species.</p

    Failure of levofloxacin treatment in community-acquired pneumococcal pneumonia

    Get PDF
    BACKGROUND: Streptococcus pneumoniae is the leading cause of community-acquired pneumonia (CAP). High global incidence of macrolide and penicillin resistance has been reported, whereas fluoroquinolone resistance is uncommon. Current guidelines for suspected CAP in patients with co-morbidity factors and recent antibiotic therapy recommend initial empiric therapy using one fluoroquinolone or one macrolide associated to other drugs (amoxicillin, amoxicillin/clavulanate, broad-spectrum cephalosporins). Resistance to fluoroquinolones is determined by efflux mechanisms and/or mutations in the parC and parE genes coding for topoisomerase IV and/or gyrA and gyrB genes coding for DNA gyrase. No clinical cases due to fluoroquinolone-resistant S. pneumoniae strains have been yet reported from Italy. CASE PRESENTATION: A 72-year-old patient with long history of chronic obstructive pulmonary disease and multiple fluoroquinolone treatments for recurrent lower respiratory tract infections developed fever, increased sputum production, and dyspnea. He was treated with oral levofloxacin (500 mg bid). Three days later, because of acute respiratory insufficiency, the patient was hospitalized. Levofloxacin treatment was supplemented with piperacillin/tazobactam. Microbiological tests detected a S. pneumoniae strain intermediate to penicillin (MIC, 1 mg/L) and resistant to macrolides (MIC >256 mg/L) and fluoroquinolones (MIC >32 mg/L). Point mutations were detected in gyrA (Ser81-Phe), parE (Ile460-Val), and parC gene (Ser79-Phe; Lys137-Asn). Complete clinical response followed treatment with piperacillin/tazobactam. CONCLUSION: This is the first Italian case of community-acquired pneumonia due to a fluoroquinolone-resistant S. pneumoniae isolate where treatment failure of levofloxacin was documented. Molecular analysis showed a group of mutations that have not yet been reported from Italy and has been detected only twice in Europe. Treatment with piperacillin/tazobactam appears an effective means to inhibit fluoroquinolone-resistant strains of S. pneumoniae causing community-acquired pneumonia in seriously ill patients

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore