51 research outputs found

    T cell expansion from umbilical cord blood without thymic stroma cells after stimulation with SCF, IL-7, AND IL-2

    Get PDF
    We analyzed in vitro expansion and differentiation of T progenitor cells from umbilical cord blood in the absence of thymic epithelium. The expansion setup is performed in the presence of SCF, IL-7 , and IL -2 with autologous serum .Using CBMCs as initial source , we compared the growth kinetics of several cell populations in either whole CBMC or  CD34+ -enriched-, as well as in CD3CD4CD8-depleted expansion assays by FACS analysis. After 11 days of culture, cell increase values were about 7 fold for CD3+, 6 fold for CD3+CD4+, 7 fold for CD3+CD8+, 4fold for CD3+CD56, 6fold for CD56+, and 0.2 fold for CD34+. We characterized the developmental state of these cell populations by RT ñ€“PCR analysis of the lymphoid differentiation markers RAG-1 and pre T-Alpha. In all samples , transcripts of both markers could be detected from day 0 though day 11, however , in case of pre ñ€“ T-Alpha,  nested PCR  was always required , indicating lower expression . These findings; therefore, demonstrate that T-cell differentiation events (as opposed to mere expansion) do occur in stroma cell free expansion assays

    Decreased C-Src Expression Enhances Osteoblast Differentiation and Bone Formation

    Get PDF
    c-src deletion in mice leads to osteopetrosis as a result of reduced bone resorption due to an alteration of the osteoclast. We report that deletion/reduction of Src expression enhances osteoblast differentiation and bone formation, contributing to the increase in bone mass. Bone histomorphometry showed that bone formation was increased in Src null compared with wild-type mice. In vitro, alkaline phosphatase (ALP) activity and nodule mineralization were increased in primary calvarial cells and in SV40-immortalized osteoblasts from Src−/− relative to Src+/+ mice. Src-antisense oligodeoxynucleotides (AS-src) reduced Src levels by ∌60% and caused a similar increase in ALP activity and nodule mineralization in primary osteoblasts in vitro. Reduction in cell proliferation was observed in primary and immortalized Src−/− osteoblasts and in normal osteoblasts incubated with the AS-src. Semiquantitative reverse transcriptase-PCR revealed upregulation of ALP, Osf2/Cbfa1 transcription factor, PTH/PTHrP receptor, osteocalcin, and pro-alpha 2(I) collagen in Src-deficient osteoblasts. The expression of the bone matrix protein osteopontin remained unchanged. Based on these results, we conclude that the reduction of Src expression not only inhibits bone resorption, but also stimulates osteoblast differentiation and bone formation, suggesting that the osteogenic cells may contribute to the development of the osteopetrotic phenotype in Src-deficient mice

    CXCL8/CXCR2 Signaling Mediates Bone Marrow Fibrosis and Is a Therapeutic Target in Myelofibrosis

    Get PDF
    Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-ÎșB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF

    Estrogen Receptor Alpha Is Expressed in Mesenteric Mesothelial Cells and Is Internalized in Caveolae upon Freund's Adjuvant Treatment

    Get PDF
    Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT) is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freund's adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-beta) into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-alpha) as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-alpha showed an inverse correlation with the secretion of TGF-beta. At the cellular and subcellular levels ER-alpha was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs) or in the membrane of these organelles, suggesting that ER-alpha is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques) indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-alpha and its caveola-mediated endocytosis might play role in TGF-beta induced type II EMT in vivo

    Planck 2013 results. XXVII. Doppler boosting of the CMB : Eppur si muove

    Get PDF
    Peer reviewe

    Planck 2013 results. XXI. Power spectrum and high-order statistics of the Planck all-sky Compton parameter map

    Get PDF
    Peer reviewe

    Planck 2013 results. XII. Diffuse component separation

    Get PDF
    Peer reviewe

    Planck 2013 results. XVI. Cosmological parameters

    Get PDF
    Peer reviewe

    Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    Get PDF
    On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2
    • 

    corecore