108 research outputs found

    Detecting Gene-Gene Interactions Using a Permutation-Based Random Forest Method

    Get PDF
    Identifying gene-gene interactions is essential to understand disease susceptibility and to detect genetic architectures underlying complex diseases. Here, we aimed at developing a permutation-based methodology relying on a machine learning method, random forest (RF), to detect gene-gene interactions. Our approach called permuted random forest (pRF) which identified the top interacting single nucleotide polymorphism (SNP) pairs by estimating how much the power of a random forest classification model is influenced by removing pairwise interactions

    Genetic Population Structure Analysis in New Hampshire Reveals Eastern European Ancestry

    Get PDF
    Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/ Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population

    Functional Genomics Annotation of a Statistical Epistasis Network Associated with Bladder Cancer Susceptibility

    Get PDF
    Background: Several different genetic and environmental factors have been identified as independent risk factors for bladder cancer in population-based studies. Recent studies have turned to understanding the role of gene-gene and gene-environment interactions in determining risk. We previously developed the bioinformatics framework of statistical epistasis networks (SEN) to characterize the global structure of interacting genetic factors associated with a particular disease or clinical outcome. By applying SEN to a population-based study of bladder cancer among Caucasians in New Hampshire, we were able to identify a set of connected genetic factors with strong and significant interaction effects on bladder cancer susceptibility. Findings: To support our statistical findings using networks, in the present study, we performed pathway enrichment analyses on the set of genes identified using SEN, and found that they are associated with the carcinogen benzo[a]pyrene, a component of tobacco smoke. We further carried out an mRNA expression microarray experiment to validate statistical genetic interactions, and to determine if the set of genes identified in the SEN were differentially expressed in a normal bladder cell line and a bladder cancer cell line in the presence or absence of benzo[a]pyrene. Significant nonrandom sets of genes from the SEN were found to be differentially expressed in response to benzo[a]pyrene in both the normal bladder cells and the bladder cancer cells. In addition, the patterns of gene expression were significantly different between these two cell types. Conclusions: The enrichment analyses and the gene expression microarray results support the idea that SEN analysis of bladder in population-based studies is able to identify biologically meaningful statistical patterns. These results bring us a step closer to a systems genetic approach to understanding cancer susceptibility that integrates population and laboratory-based studies

    Immune profiles and DNA methylation alterations related with non-muscle-invasive bladder cancer outcomes

    Get PDF
    Background: Non-muscle-invasive bladder cancer (NMIBC) patients receive frequent monitoring because ≥ 70% will have recurrent disease. However, screening is invasive, expensive, and associated with significant morbidity making bladder cancer the most expensive cancer to treat per capita. There is an urgent need to expand the understanding of markers related to recurrence and survival outcomes of NMIBC. Methods and results: We used the Illumina HumanMethylationEPIC array to measure peripheral blood DNA methylation profiles of NMIBC patients (N = 603) enrolled in a population-based cohort study in New Hampshire and applied cell type deconvolution to estimate immune cell-type proportions. Using Cox proportional hazard models, we identified that increasing CD4T and CD8T cell proportions were associated with a statistically significant decreased hazard of tumor recurrence or death (CD4T: HR = 0.98, 95% CI = 0.97–1.00; CD8T: HR = 0.97, 95% CI = 0.95–1.00), whereas increasing monocyte proportion and methylation-derived neutrophil-to-lymphocyte ratio (mdNLR) were associated with the increased hazard of tumor recurrence or death (monocyte: HR = 1.04, 95% CI = 1.00–1.07; mdNLR: HR = 1.12, 95% CI = 1.04–1.20). Then, using an epigenome-wide association study (EWAS) approach adjusting for age, sex, smoking status, BCG treatment status, and immune cell profiles, we identified 2528 CpGs associated with the hazard of tumor recurrence or death (P \u3c 0.005). Among these CpGs, the 1572 were associated with an increased hazard and were significantly enriched in open sea regions; the 956 remaining CpGs were associated with a decreased hazard and were significantly enriched in enhancer regions and DNase hypersensitive sites. Conclusions: Our results expand on the knowledge of immune profiles and methylation alteration associated with NMIBC outcomes and represent a first step toward the development of DNA methylation-based biomarkers of tumor recurrence

    Complex systems analysis of bladder cancer susceptibility reveals a role for decarboxylase activity in two genome-wide association studies

    Get PDF
    BACKGROUND: Bladder cancer is common disease with a complex etiology that is likely due to many different genetic and environmental factors. The goal of this study was to embrace this complexity using a bioinformatics analysis pipeline designed to use machine learning to measure synergistic interactions between single nucleotide polymorphisms (SNPs) in two genome-wide association studies (GWAS) and then to assess their enrichment within functional groups defined by Gene Ontology. The significance of the results was evaluated using permutation testing and those results that replicated between the two GWAS data sets were reported. RESULTS: In the first step of our bioinformatics pipeline, we estimated the pairwise synergistic effects of SNPs on bladder cancer risk in both GWAS data sets using Multifactor Dimensionality Reduction (MDR) machine learning method that is designed specifically for this purpose. Statistical significance was assessed using a 1000-fold permutation test. Each single SNP was assigned a p-value based on its strongest pairwise association. Each SNP was then mapped to one or more genes using a window of 500 kb upstream and downstream from each gene boundary. This window was chosen to capture as many regulatory variants as possible. Using Exploratory Visual Analysis (EVA), we then carried out a gene set enrichment analysis at the gene level to identify those genes with an overabundance of significant SNPs relative to the size of their mapped regions. Each gene was assigned to a biological functional group defined by Gene Ontology (GO). We next used EVA to evaluate the overabundance of significant genes in biological functional groups. Our study yielded one GO category, carboxy-lysase activity (GO:0016831), that was significant in analyses from both GWAS data sets. Interestingly, only the gamma-glutamyl carboxylase (GGCX) gene from this GO group was significant in both the detection and replication data, highlighting the complexity of the pathway-level effects on risk. The GGCX gene is expressed in the bladder, but has not been previously associated with bladder cancer in univariate GWAS. However, there is some experimental evidence that carboxy-lysase activity might play a role in cancer and that genes in this pathway should be explored as drug targets. This study provides a genetic basis for that observation. CONCLUSIONS: Our machine learning analysis of genetic associations in two GWAS for bladder cancer identified numerous associations with pairs of SNPs. Gene set enrichment analysis found aggregation of risk-associated SNPs in genes and significant genes in GO functional groups. This study supports a role for decarboxylase protein complexes in bladder cancer susceptibility. Previous research has implicated decarboxylases in bladder cancer etiology; however, the genes that we found to be significant in the detection and replication data are not known to have direct influence on bladder cancer, suggesting some novel hypotheses. This study highlights the need for a complex systems approach to the genetic and genomic analysis of common diseases such as cancer

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium

    Get PDF
    Background Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies. Methods Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case-control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided. Results Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, Ptrend = 2 × 10−26), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, Ptrend = 1 × 10−10) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, Ptrend = 5 × 10−8) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, Ptrend = 2 × 10−5; rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, Ptrend = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was observed in both ethnic groups. Neither of the two variants on chromosome 6p21 was associated with the risk of lung cancer. Conclusions In this international genetic association study of lung cancer, previous associations found in white populations were replicated and new associations were identified in Asian populations. Future genetic studies of lung cancer should include detailed stratification by histolog
    corecore