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L’Hospitalet de Llobregat, Barcelona, Spain, 6 Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America

Abstract

Genetic structure due to ancestry has been well documented among many divergent human populations. However, the
ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more
presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could
be detected in a United States population from a single state where the individuals have mixed European ancestry. Using
Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification
in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups.
We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/
Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were
further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of
European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the
genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation
has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous
US population.
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Introduction

Genetic population structure is the presence of genetically

distinct subgroups that result from shared ancestry within a larger

population. Most notably, structure was displayed by Rosenberg

et al., when the Bayesian clustering method structure was used to

group 1056 individuals from 52 populations, using microsatellite

data [1]. This ‘‘large-scale’’ genetic structure was further

corroborated by Li et al. in 2008, in an analysis of 650,000 SNPs

from the Human Genome Diversity panel [2]. Other researchers

have continued to investigate regional structure patterns with a

variety of results [3–14]. Of particular interest is that even in

presumably homogeneous populations, genetic structure has been

detected and linked to geography [15,16]. These studies of genetic

structure are important because they can be used to prevent

confounding in genetic epidemiology studies and are key to

elucidating the genetic anthropology of a region.

There have been several studies exploring the link between

genetic structure and shared ancestry [1,17–19]. Most of these

studies within evolutionary population genetics (unlike those used

to ascertain confounding in genetic epidemiology) focused on

the structure of ethnic groups with clearly distinct histories or

geographical locations (i.e. Caucasian, African-American, Hispanic,

Asian), and did not find additional reliable subdivision. They also

typically begin with the ascertainment of each individual’s ancestral

population history and then use those population groups to

supervise the clustering methods. These studies provide tremendous

insight into population genetics and human evolution. However, as

previously mentioned, subgroups have been identified within

presumably homogeneous or highly admixed populations, suggest-

ing that a subset of individuals share some ancestry. The question

therefore becomes whether individuals identified within a genetic

subgroup can later also be associated with a particular geographic

ancestry. Subsequently, do these genetic and ancestral subgroups

provide more information about a region’s history than currently

available methods such as census records? If ancestral and genetic

subgroups can be ascertained, it is also important for genetic

association studies taking place in that region because typical self-

reported race data may not adequately control for substructure

confounding.

The state of New Hampshire is an ideal place to investigate

these questions because it is highly admixed, with what is generally

considered predominantly Western European and French-Cana-

dian inhabitants. However, the state is usually considered

ancestrally homogeneous from the viewpoint of epidemiological

studies, with 96% of citizens being Caucasian (2000 census,
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http://www.census.gov/main/www/cen2000.html). There is also

a wealth of historical and census data that can lend insight into

predominant immigration patterns.

Results

This study is based on controls enrolled in the New Hampshire

Bladder Cancer and Skin Cancer Studies (n = 864) conducted at

Dartmouth Medical School [20]. Subjects were genotyped for

1529 single nucleotide polymorphisms (SNPs) within suspected

cancer susceptibility genes, though filtering for SNPs that would

unduly influence the clustering results (those in linkage disequilib-

rium at r2 of 0.8) reduced the number of SNPs to 960 within 360

genes. There were between 1 and 13 SNPs per gene with an

average of 2.7 and median of 2 (Table S1). The genotype data are

more fully described in [20,21]. Bayesian clustering conducted

using the structure software revealed distinct subpopulations, with

the highest and most reliable probabilities between a K of 5 and 7.

The bar plots are shown for K = 2 to K = 8 from the CLUMPP

software (aligns multiple runs of structure) from 10 runs at each K

(Figure 1a). As expected, individuals in the sample appear highly

admixed; however distinct populations are discernible. The FST’s

increase consistently as K increases, with the average FST’s for

K = 4 to K = 7 around the level of ‘‘little genetic differentiation’’ as

defined by Wright (approx. 0.05) (Figure 1c,d) [22]. The

admixture values increase for lower K’s, but begin to drop at

K = 6 to values between 0.6–0.7 (Table S2). In selecting the most

correct K, parsimony is an important consideration, i.e. that the

simpler answer tends to be correct. Though there may be some

validity to further subdividing the groups, the most statistically

consistent and the most parsimonious K based on the structure

output is K = 6. Further analysis using the ancestral data is used to

describe the groupings and lends support to our selection of K = 6.

The overall results from a Spearman’s rank correlation between

self-reported ancestry for each individual and their structure q

values (the proportion of their SNPs from each population) are given

Figure 1. Bayesian clustering results. a) Bar plots from CLUMPP results aligning 10 structure runs for K = 2 to K = 10. Each plot was created using
960 tagSNPs from 864 individuals, and is sorted by q values. The plots are read from left to right, with bars representing individuals and the color of
the bar representing the proportion of that individuals’ markers that originated from a certain population. b) Probabilities from structure shown as
boxplots of the 10 runs at each K. Structure admixture (c) and FST (d) values for 10 runs. The FST’s graphed are averages across each subpopulation for
each K.
doi:10.1371/journal.pone.0006928.g001

Genetic Structure in NH
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as p-values in Tables 1 and S3 (Table S3 is full results, Table 1 shows

only significant results) for K = 3 to K = 7. Of particular interest is

the consistency with which Lithuania, Poland and Russian

ancestries correlate, forming a distinct and single group, as well as

the strong ancestry of Finland, which represents a clear group for

K = 4 through K = 7. Sample sizes as well as an investigation of

individual reporting of ancestries and which population each person

is assigned to based on their maximum q values for K = 6 is shown

in Table S4. Lithuania, Russia and Finland all have fairly small

sample sizes (n = 12, 13, 7), though Poland’s sample size is larger

with 44 people reporting Polish ancestry. Of these, 7 people

reporting full Polish ancestry and 9 part Polish ancestry have their

maximum q values for structure runs for population 6. Of the 7

people reporting Finnish ancestry, 4 have their maximum q values

for population 5, with their average q’s being relatively high (0.52).

The Czech population is the smallest that significantly correlates

with a population group; 2 of the 5 individuals assigned to

population 3. The groups for which there were larger sample sizes

less clearly correlate with different structure groups, such as England

with population 2 and France with population 4, though these also

have mixed historical ancestries. This is somewhat expected as these

larger groups make up those that helped to originally settle New

Hampshire, and therefore form the genetic background with which

the other, smaller ancestral groups admixed. The Canadian

Indians, French and Jewish population groupings seem similarly

complex. However, it has been noted in a previous study that a

New York City Jewish population tended to group with Southern

Europeans, demonstrating a strong Mediterranean influence [23].

There may also be French Canadian mixing with the Canadian

Indian group, so that in essence those of both the Jewish and

Canadian Indian ancestry share some Southern European influence.

However, this will require further investigation.

The finding that Eastern European ancestries correlate with

distinct genetic subpopulations in New Hampshire was surprising.

Finland has a unique genetic history with a known strong founder

effect and also showed a strong signal in the previously mentioned

New York City study. Sweden is the most well-known historic

contributor to Finland genetics, however it is Switzerland that

clusters with Finland at K = 4 and K = 5 in our investigation [24].

The ancestry results lend support to a model of K = 6, as the

divisions between, e.g. Finland and the rest of the population are

more clear than lower K’s, and K = 7 is less clear as Canadian

Indian ancestry appears in two separate populations (complete

Table S3), (although this may represent subdivisions within the

Canadian Indian group).

New Hampshire census data from 1870 to 1930 is the most

effective time period to investigate, because around the turn of the

20th century there was a great deal of immigration to New

Hampshire from all over Europe, Canada and elsewhere in New

England [25] (Figure 2). The immigrants predominantly moved

into the mill towns such as Manchester and Milford located in the

south-central region (Hillsborough County) to find employment.

Table 1. Ancestry analysis results for between 2 and 7 populations assumed.

Number of Populations Population Group Ancestries (p-value)

K3 1 Finland (0.005) Ireland (0.05)

2 Italy (0.022) UK (0.027)

3 Ca_Indian (0.005) Germany (0.026) Russia (0.019)

K4 1 Poland (0.015) Russia (0.001) UK (0.035)

2 Ca_Indian (0.008) Jewish (0.049)

3 Finland (0.008) Switzerland (0.038)

4 Italy (0.017) Netherlands (0.024)

K5 1 England (0.011) Italy (0.01) Netherlands (0.004)

2 Lithuania (0.037) Poland (0.001) Russia (0.000)

3 Ca_Indian (0.016) France (0.035) Jewish (0.037)

4 Am_Indian (0.04) Ca_Indian (0.035) Canada (0.025)

5 Finland (0.006) Switzerland (0.043)

K6 1 Am_Indian (0.043)

2 England (0.024) Italy (0.03) Netherlands (0.002)

3 Czech (0.029)

4 Ca_Indian (0.021) France (0.02) Jewish (0.023)

5 Finland (0.006)

6 Lithuania (0.017) Poland (0.001) Russia (0.001)

K7 1 Ca_Indian (0.011)

2 England (0.03) Italy (0.005) Netherlands (0.007)

3 Am_Indian (0.027) UK (0.038)

4 Finland (0.007)

5 Czech (0.029)

6 Lithuania (0.024) Poland (0.001) Russia (0.001)

7 Ca_Indian (0.046) France (0.012) Jewish (0.023)

A Spearman’s rank correlation between each ancestry with more than 5 individuals reporting For each population, ancestries with a Spearman’s rank correlation
p-value , 0.05 are shown along with their p-values (in parenthesis).
doi:10.1371/journal.pone.0006928.t001

Genetic Structure in NH
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Figure 2. Census data for New Hampshire from 1870 to 1930 showing thousands of immigrants from European countries by census year.
doi:10.1371/journal.pone.0006928.g002

Genetic Structure in NH
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The census demonstrates that the largest single group came from

Canada, many of whom were French Canadian. Major immigrant

groups also came from Ireland, England and Scotland. These

populations also constituted the bulk of earlier immigration.

Smaller, though not inconsequential immigrant groups arrived

from Germany, Russia, Greece, Sweden, Poland, Lithuania and

Finland along with other European countries. In 1930 there were

1427, 4101, 1084 and 1386 individuals in New Hampshire who

were respectively born in Russia, Poland, Lithuania and Finland.

Our data demonstrate that these groups influenced the state’s

genetic substructure. The Czech group is interesting, despite the

small sample size, because Czechoslovakia was not founded until

1918. Therefore, data on individuals born in Czechoslovakia were

not recorded in the United States census during most of the large

waves of immigration. The self-reported ancestral and genetic

structure data lend evidence to a genetic contribution of the region

of the current Czech Republic to New Hampshire despite the lack

of historical record, though more study on this topic is required

due to the very small sample size of the Czech group. Further

investigation of the census data shows that most of the immigrants

were moving to Hillsborough County likely in pursuit of jobs at the

mills that were being built there during the industrial revolution

(Figure S1). A few groups seemed to selectively migrate to other

regions of the state, such as the Norwegians largely settling in Coos

County (in the north). Geographical analysis supports the intuition

that the most genetically diverse places are in high population

areas (Figure S2).

Plots of D9 revealed different LD patterns among the genetic

population subgroups in the growth hormone receptor (GHR) gene

at K = 4 (Figure 3). For K = 4 the LD plots shows visual differences

especially between population 3 and the other populations. This

population corresponds to the Finland/Switzerland ancestry group.

Plots above K = 4 are difficult to compare due to missing data, as we

restricted the analysis to those individuals that could be absolutely

placed in one population (q. = 0.5001). Statistical haplotype

comparisons determined that there is statistically significant associ-

ation between haplotypes and population membership between

populations one and two, corresponding with the Poland/Russia/

UK group and the Canadian Indian/Jewish group (Table 2). Other

comparisons were not significant when corrected for multiple testing.

Discussion

These results suggest that genetic population structure is

detectable in a highly admixed US population and that this

structure correlates with self-reported ancestry. To our knowledge,

this is the first time such an investigation has uncovered a strong

link between structure and ancestry in what would otherwise be

assumed to be a homogeneous US state where most individuals are

Figure 3. D’ values using 18 SNPs from the GHR gene for K = 4 population clusters.
doi:10.1371/journal.pone.0006928.g003

Table 2. Haplotype association analysis results using score
statistics as computed within the R package haplo.stats.

global 1 2 3 4

1 (n = 49) 0.01542 NA 0.0001* 0.05783 0.00626

2 (n = 89) 0.00139 NA 0.00067 0.24951

3 (n = 80) 0.0081 NA 0.00804

4 (n = 60) 0.35765 NA

Global values were obtained by comparing individuals from each population to
all others from the other 3 populations. Subsequent p-values presented are
obtained by comparing haplotypes between groups. The haplotypes were
associated when comparing populations 1 and 2*, with a p-value below a
Bonferroni corrected alpha of 0.000347.
doi:10.1371/journal.pone.0006928.t002

Genetic Structure in NH
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of European ancestry. Our data indicate that that admixture has

not eliminated the genetic structure found within Europe, and

descendants of the Russian, Polish and Lithuanian immigrants

remain genetically distinct from the rest of the population and are

closely related to one another. These results are unique in that

they are analyzed on an individual, rather than population basis,

and use a relatively small number of SNPs compared to Genome-

wide studies. Of further interest is the fact that these findings are

based on a panel of SNPs in hypothesized cancer susceptibility

genes. Since the clustering was done within cancer susceptibility

genes, subsequent investigation may reveal a different general

cancer susceptibility subtype (and thus disease risk) in each of these

genetic and ancestral sub-populations. Such patterns of variation

indicate that investigators undertaking genetic epidemiology

research in New Hampshire, the larger New England region or

other areas of the United States where there is a known Eastern

European influence should consider taking self-reported ancestry

into account to avoid structure influencing their results.

Materials and Methods

Data collection
Controls less than 65 years of age were selected using

population lists obtained from the New Hampshire Department

of Transportation. Controls 65 year of age and older were chosen

from data files provided by the Centers for Medicare & Medicaid

Services (CMS) of New Hampshire. We interviewed a total 1191

controls throughout the state, of which 70% were confirmed to be

eligible for the study. Informed consent was obtained from each

participant and all procedures and study materials were approved

by the Committee for the Protection of Human Subjects at

Dartmouth College. Consenting participants underwent a detailed

in-person interview, usually at their home. Subjects were asked to

provide a blood sample (buccal sample was requested if a blood

sample could not be drawn).

Genotyping was performed on all DNA samples of sufficient

concentration (864 control individuals) using the Golden Gate

Assay system by Illumina’s Custom Genetic Analysis service

(Illumina, Inc., San Diego, CA). Samples repeated on multiple

plates yielded the same call for 99.9% of SNPs and 99.5% of

samples submitted were successfully genotyped. Genotype calls

were 99% concordant between genotyping platforms (Taqman).

We obtained genotype information from 1529 single nucleotide

polymorphisms (SNPs) in suspected cancer susceptibility genes

scattered throughout the genome. After filtering the data for SNPs

in Hardy-Weinberg disequilibrium, we used the tagSNP software

within Haploview to tagSNP the data (r2 = 0.8) to be sure that the

clustering was not driven by LD. The 960 remaining tag SNPs

were then used in the structure analysis. Only control individuals (no

history of bladder cancer) were used in this study to prevent case/

control status from confounding the analysis.

Bayesian Clustering
In order to determine if genetic subpopulations are present in the

New Hampshire population we used Bayesian clustering as

implemented in the structure program to cluster individuals using

the remaining 960 SNPs. Structure iteratively clusters based on a user-

supplied ‘‘K’’ number of populations. The genotype data were

analyzed using the structure(v. 2.2.3) admixture model, without

population data assigned (burnin of length 30,000, followed by

100,000 iterations) for 10 repetitions of each K from 2 to 10 [26–28].

This is far beyond the default number of iterations for structure, but

high consistency between runs even at large K’s were observed at

values higher than the default. We concurrently ran random

genotype data as well as the sample data from the structure software

website as positive and negative controls. CLUMPP (v. 1.1.1) was

used to align the repetitions for each K, using G9. The output from

CLUMPP was used for both the ancestry and LD analyses.

Ancestry Analysis
Once the Bayesian clustering was complete, self-reported

ancestry was assessed for association with the genetic subgroups.

Each study individual was asked to report the previous 2

generations of ancestral information (i.e., parents and all

grandparents). Each individual in the dataset was surveyed

regarding their ancestry. They were allowed to provide up to

three ancestries for each of their parents and all of their

grandparents. Ancestries were reported as Surveillance, Epidemi-

ology, and End Results (SEER) country codes [29]. Exploratory

analysis revealed that among the ancestries, those reported by at

least five individuals were: American Indian (n = 32), Austria

(n = 5), Belgium (n = 5), Canadian Indian (n = 14), Canada

(n = 113), Czech Republic (n = 5), England (n = 355), Finland

(n = 7), French-Canadian (n = 54), France (n = 173), Germanic

(countries where Germanic languages spoken) (n = 5), Germany

(n = 110), Greece (n = 9), Ireland (n = 218), Italy (n = 41), Jewish

(n = 6), Lithuania (n = 12), Canadian Maritime Provinces (n = 6),

Netherlands (n = 25), Poland (n = 44), Russia (n = 13), Scotland

(n = 157), Sweden (n = 24), Switzerland (n = 7), UK (n = 11), US

(n = 42), Wales (n = 24). The level of completeness of the data

varied between the individuals; therefore we decided to undertake

an individual-based analysis. Each subject’s data was coded as 0,1

or 2 for each ancestry, indicating not having the ancestry at all,

reporting being ‘‘part’’ that ancestry, or reporting only that

ancestry, respectively. For instance, if a subject reported only being

from England, they would be given a 2 for England and a 0 for

other ancestries. Whereas a subject reporting one grandparent

from England and three grandparents from France would be given

a 1 for England, a 1 for France, and 0 for the others. This ‘‘none’’,

‘‘part’’ and ‘‘all’’ coding could be made with more certainty than

assigning weights based on the number of times an ancestry was

reported. A Spearman’s Rank Correlation was then calculated

between the ancestry codes and the individual’s q value for each

population from the CLUMPP output for each population.

We next sought to more directly determine if individuals from the

correlated ancestries historically immigrated to New Hampshire in

large enough numbers to impact its current genetic makeup. Census

data from 1870–1930 were obtained from the Inter-university

Consortium for Political and Social Research and analyzed using

the University of Virginia Historical Census Browser (http://fisher.

lib.virginia.edu/collections/stats/histcensus/).

Linkage Disequilibrium
Using a subset of the data with high LD removed, we were able

to find genetic clustering using Bayesian clustering. A subsequent

question was whether distinct patterns of LD could be discerned

within subpopulations using the full dataset. Patterns within

individual genes would lend further support or explanation to our

model, as LD is known to be highly influenced by personal

ancestry. The genotyped SNPs were distributed evenly throughout

the genome, focusing on suspected cancer susceptibility genes. The

6 genes with the most assayed SNPs (CYP19A1, GHR, GSK3B,

KRAS, PGR, PMS1, TNKS) were used to compare LD between

the clusters. D’ was calculated using Powermarker [30]. Individuals

had to have a q value of at least 0.5001 in order to be included as

part of a for the LD analysis. Other genes were entirely in LD for

all populations or did not differentiate between populations (data

not shown).

Genetic Structure in NH
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In order to statistically compare LD between each of these four

populations, an association analysis between haplotypes and

population membership was conducted between each of the

populations and between each population and all the individuals

in other populations. The analysis was conducted in R using the

haplo.stats package which conducts association between traits and

haplotypes using score statistics as estimated by an expectation-

maximization algorithm [31].
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Hampshire using distance values calculated in Alleles in Space,
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county lines). Genetic distances were calculated as the number of

mismatched SNPs between individuals connected in a Delaunay
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