2,044 research outputs found

    A whole blood approach improves speed and accuracy when measuring mitochondrial respiration in intact avian blood cells

    Get PDF
    Understanding mitochondrial biology and pathology is key to understanding the evolution of animal form and function. However, mitochondrial measurement often involves invasive, or even terminal, sampling, which can be difficult to reconcile in wild models or longitudinal studies. Non-mammal vertebrates contain mitochondria in their red blood cells, which can be exploited for minimally invasive mitochondrial measurement. Several recent bird studies have measured mitochondrial function using isolated blood cells. Isolation adds time in the laboratory and might be associated with physiological complications. We developed and validated a protocol to measure mitochondrial respiration in bird whole blood. Endogenous respiration was comparable between isolated blood cells and whole blood. However, respiration towards oxidative phosphorylation was higher in whole blood, and whole blood mitochondria were better coupled and had higher maximum working capacity. Whole blood measurement was also more reproducible than measurement on isolated cells for all traits considered. Measurements were feasible over a 10-fold range of sample volumes, although both small and large volumes were associated with changes to respiratory traits. The protocol was compatible with long-term storage: after 24 h at 5°C without agitation, all respiration traits but maximum working capacity remained unchanged, the latter decreasing by 14%. Our study suggests that whole blood measurement provides faster, more reproducible, and more biologically and physiologically relevant (mitochondrial integrity) assessment of mitochondrial respiration. We recommend future studies to take a whole blood approach unless specific circumstances require the use of isolated blood cells

    Plasticity of mitochondrial function safeguards phosphorylating respiration during in vitro simulation of rest-phase hypothermia

    Get PDF
    Many animals downregulate body temperature to save energy when resting (rest-phase hypothermia). Small birds that winter at high latitudes have comparatively limited capacity for hypothermia and so pay large energy costs for thermoregulation during cold nights. Available evidence suggests this process is fueled by adenosine triphosphate (ATP)-dependent mechanisms. Most ATP is produced by oxidative phosphorylation in the mitochondria, but mitochondrial respiration may be lower during hypothermia because of the temperature dependence of biological processes. This can create conflict between increased organismal ATP demand and a lower mitochondrial capacity to provide it. We studied this in blood cell mitochondria of wild great tits (Parus major) by simulating rest-phase hypothermia via a 6°C reduction in assay temperature in vitro. The birds had spent the night preceding the experiment in thermoneutrality or in temperatures representing mild or very cold winter nights, but night temperatures never affected mitochondrial respiration. However, across temperature groups, endogenous respiration was 14% lower in hypothermia. This did not reflect general thermal suppression of mitochondrial function because phosphorylating respiration was unaffected by thermal state. Instead, hypothermia was associated with a threefold reduction of leak respiration, from 17% in normothermia to 4% in hypothermia. Thus, the coupling of total respiration to ATP production was 96% in hypothermia, compared to 83% in normothermia. Our study shows that the thermal insensitivity of phosphorylation combined with short-term plasticity of leak respiration may safeguard ATP production when endogenous respiration is suppressed. This casts new light on the process by which small birds endure harsh winter cold and warrants future tests across tissues in vivo

    openBIS: a flexible framework for managing and analyzing complex data in biology research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it.</p> <p>Results</p> <p>We have developed openBIS, an open source software framework for constructing user-friendly, scalable and powerful information systems for data and metadata acquired in biological experiments. openBIS enables users to collect, integrate, share, publish data and to connect to data processing pipelines. This framework can be extended and has been customized for different data types acquired by a range of technologies.</p> <p>Conclusions</p> <p>openBIS is currently being used by several SystemsX.ch and EU projects applying mass spectrometric measurements of metabolites and proteins, High Content Screening, or Next Generation Sequencing technologies. The attributes that make it interesting to a large research community involved in systems biology projects include versatility, simplicity in deployment, scalability to very large data, flexibility to handle any biological data type and extensibility to the needs of any research domain.</p

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Utilization of livers donated after circulatory death for transplantation - An international comparison.

    Get PDF
    BACKGROUND AND AIM Liver graft utilization rates are a hot topic due to the worldwide organ shortage and an increasing number of transplant candidates on waiting lists. Liver perfusion techniques have been introduced in several countries, and may help to increase the organ supply, as they potentially allow the assessment of livers before use. METHODS Liver offers were counted from donation after circulatory death (DCD) donors (Maastricht-type-III) arising during the past decade in eight countries, including Belgium, France, Italy, the Netherlands, Spain, Switzerland, UK, and US. Initial DCD-type-III liver offers were correlated with accepted, recovered and implanted livers. RESULTS A total number of 34`269 DCD livers were offered, resulting in 9`780 liver transplants (28.5%). The discard rates were highest in UK and US, ranging between 70 and 80%. In contrast, much lower DCD liver discard rates, e.g., between 30-40%, were found in Belgium, France, Italy, Spain and Switzerland. In addition, large differences were recognized in the use of various machine perfusion techniques, and in terms of risk factors in the cohorts of implanted livers. For example, the median donor age and functional donor warm ischemia were highest in Italy, e.g., >40minutes, followed by Switzerland, France, and the Netherlands. Importantly, such varying risk profiles of accepted DCD livers between countries did not translate into large differences in five-year graft survival rates, which ranged between 60-82% in this analysis. CONCLUSIONS We highlight a significant number of discarded and consequently unused DCD liver offers. Countries with more routine use of in- and ex-situ machine perfusion strategies showed better DCD utilization rates without compromised outcome. IMPACT AND IMPLICATIONS A significant number of Maastricht type III DCD livers are discarded across Europe and North America today. The overall utilization rate among eight Western countries is 28.5%, but varies significantly between 18.9% and 74.2%. For example, the median DCD III liver utilization in five countries, e.g., Belgium, France, Italy, Switzerland, and Spain is 65%, in contrast to 24% in the Netherlands, UK and US. Despite this, and despite different rules and strategies for organ acceptance and preservation, the one and five-year graft survival remains currently relatively comparable among all participating countries. Factors which impact on DCD liver acceptance rates include the national pre-selections of donors, before the offer is made, as well as cutoffs for key risk factors, including donor age and donor warm ischemia time. In addition, a highly varying experience with modern machine perfusion technology is noticed. In situ and ex situ liver perfusion concepts, and assessment tools for type III DCD livers before transplantation may be one key part for the observed differences in better DCD III utilization

    Deceased organ donation activity and efficiency in Switzerland between 2008 and 2017: achievements and future challenges.

    Get PDF
    Various actions have been taken during the last decade to increase the number of organs from deceased donors available for transplantation in Switzerland. This study provides an overview on key figures of the Swiss deceased organ donation and transplant activity between 2008 and 2017. In addition, it puts the evolution of the Swiss donation program's efficiency in relation to the situation in the neighboring countries. This study is an analysis of prospective registry data, covering the period from 1 January 2008 to 31 December 2017. It includes all actual deceased organ donors (ADD) in Switzerland. Donor data were extracted from the Swiss Organ Allocation System. The "donor conversion index" (DCI) methodology and data was used for the comparison of donation program efficiency in Switzerland, Germany, Austria, Italy and France. During the study period there were 1116 ADD in Switzerland. The number of ADD per year increased from 91 in 2008 to 145 in 2017 (+ 59%). The reintroduction of the donation after cardiocirculatory death (DCD) program in 2011 resulted in the growth of annual percentages of DCD donors, reaching a maximum of 27% in 2017. The total number of organs transplanted from ADD was 3763 (3.4 ± 1.5 transplants per donor on average). Of these, 48% were kidneys (n = 1814), 24% livers (n = 903), 12% lungs (n = 445), 9% hearts (n = 352) and 7% pancreata or pancreatic islets (n = 249). The donation program efficiency assessment showed an increase of the Swiss DCI from 1.6% in 2008 to 2.7% in 2017 (+ 69%). The most prominent efficiency growth was observed between 2012 and 2017. Even though Swiss donation efficiency increased during the study period, it remained below the DCI of the French and Austrian donation programs. Swiss donation activity and efficiency grew during the last decade. The increased donation efficiency suggests that measures implemented so far were effective. The lower efficiency of the Swiss donation program, compared to the French and Austrian programs, may likely be explained by the lower consent rate in Switzerland. This issue should be addressed in order to achieve the goal of more organs available for transplantation

    Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV

    Get PDF
    Results are presented from a search for physics beyond the standard model based on events with large missing transverse energy, at least three jets, and at least one, two, or three b-quark jets. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 inverse femtobarns. The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.Comment: Submitted to Physical Review

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Search for Bs0B^{0}_{s} oscillations using inclusive lepton events

    Get PDF
    A search for Bs oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the prop er time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to Bs mixing is obtained by identifying subsamples of events having a Bs purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Dms>9.5 ps-1 at 95% CL. Combining with the ALEPH Ds based analyses yields Dms>9.6 ps-1 at 95% CL.A search for B0s oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the proper time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to B0s mixing is obtained by identifying subsamples of events having a B0s purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Deltam_s>9.5ps^-1 at 95% CL. Combining with the ALEPH D-s based analyses yields Deltam_s>9.6ps^-1 at 95% CL

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore