90 research outputs found

    Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures

    Full text link
    Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometer size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetisation at the nanoscale. To date, chiral skyrmion structures have been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films and under external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero applied magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral N\'eel internal structure which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.Comment: Submitted version. Extended version to appear in Nature Nanotechnolog

    Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Get PDF
    Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7

    Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Get PDF
    Heterozygous variants in the arginine‐glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin‐1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss‐of‐function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine‐rich region in the Atrophin‐1 domain. We have also identified a recurrent two‐amino‐acid duplication in this region that is associated with the development of a CHARGE syndrome‐like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.We describe nine unrelated individuals who carry partial deletions or putatively deleterious sequence variants in RERE. An analysis of clinical and molecular data from individuals with mutations affecting RERE suggests the existence of novel genotype‐phenotype correlations and demonstrates that a high percentage of RERE pathogenic variants affect a histidine‐rich region in the Atrophin‐1 domain. We have also identified a recurrent two‐amino‐acid duplication in this region that is associated with the development of a CHARGE syndrome‐like phenotype.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/1/humu23400_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/2/humu23400.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/3/humu23400-sup-0001-SuppMat.pd

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Modifier genetics in neuropsychiatric disease: challenges and opportunities

    No full text

    The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles

    No full text
    <div><p>The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in <i>Caenorhabditis elegans</i> for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment.</p></div

    <i>eipr-1</i> acts in head cholinergic neurons to control locomotion.

    No full text
    <p>(A) The <i>eipr-1</i> cDNA was expressed in an <i>eipr-1(tm4790)</i> mutant background using the following promoters: <i>rab-3</i> (all neurons, <i>yakSi4</i> transgene), <i>unc-17</i> (cholinergic neurons, <i>yakSi5</i> transgene), <i>unc-17H</i> (a derivative of the <i>unc-17</i> promoter that lacks the enhancer for ventral cord expression and thus expresses only in head cholinergic neurons [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006074#pgen.1006074.ref029" target="_blank">29</a>], <i>yakSi2</i> transgene), and <i>acr-2</i> (ventral cord cholinergic motor neurons, <i>yakSi10</i> transgene). Expression driven by the <i>rab-3</i>, <i>unc-17</i>, and <i>unc-17H</i> promoters rescued the mutant locomotion defect, but expression driven by <i>acr-2</i> did not (***, P<0.001; ns, not significant, P>0.05). Error bars = SEM; n = 12–20. (B) <i>eipr-1</i> acts cell autonomously to control dense-core vesicle cargo trafficking. The <i>eipr-1</i> cDNA was expressed in an <i>eipr-1(tm4790)</i> mutant background using either the <i>rab-3</i> promoter (all neurons, <i>yakSi4</i>) or <i>unc-129</i> promoter (a subset of cholinergic motor neurons where NLP-21::Venus is also expressed, <i>yakEx70</i>). Expression driven by both promoters rescued the <i>unc-129p</i>::NLP-21::Venus (<i>nuIs183</i> transgene) trafficking defect of the mutant (***, P<0.001). Left: representative images. Scale bar: 10 μm. Right: quantification of dorsal cord fluorescence. Error bars = SEM; n = 7–13.</p
    corecore